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Abstract

A functional representation, which is a genere.iizatton of the linear convolution Inte-

gral, is used to describe continuous nonlinear systems. Emphasis is placed on nonlinear

systems composed of linear subsystems with memory, and notilinear no-memory

subsystems. An "Algebra of Systems" is developed to facilitate the de-cription of st'ch

nombined systems. From this algebraic description, multidimensional system trans-

forms are obtained. These trarmforms specify the system in rntich the same manner as
one-dimensional transforms specify linear systems. The systein transforms and the

transform of the uystem's input signal are then used to detee'min, the transform o, the

output signal. Transform theory is also used for deteei:ining averages and spectra of

the hystem output Yhen the input is a random signal Gause tnlv distributed. Certain

theoretical aspt !. of the fan-tional representation are dis, ussed,
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!. IN'T-cOI)UCTION

1.1 SYSTEM ANALYSIS

In physical analysis, a "system" is often used to specify the rela,..on between a r-ause

and an effer' In system term'inology, the cause is the system input and the effect is the

output, This is represented in Fig. 1, where x is the input signal and f is the output

signal. Usually these signal's are functions of tire. o0

the seve-al general classifications of systems, the class

(t) NONLINAR that has been most successfully studied is the linear,
SYSTEM time-stationary sy-:¢r-. This report is concerned with

the nonlinear, stationary system - particularly the con-

Fig. 1. Nonlinear system. tinuous nonlinear stationary system, The c:ontinuous n•n-

linear system will be described in detail In qection 6.8,
The continuous concept .vnpltae a ce, tain degree of smoothness in the system's input-

outptt relation, The linear system can be regarded as a special case of the continuous

nonlinear system.
The analysis of a system is dependent apon finding a mathematic Al description of the

relation between the system input and the system output. Classically, the relation is
obtained by means of a differential equation. However, the present means of repre-

senting a linear system is by the convclution integral and its associated transforms,
The mathematical representation for nonlinear systems which forms the basis of this

report 1. ilroely related to these modern methods for linear system analysis,

1. . I"UNCTIONAL REPRESENTATION

A function f operates on a set of variables x tu produce a new set of variables f(x),

A functional, however, operates on a set of functions iv,,. produces a new set of functions

In other words, a functional is a .6in#.tion of a function,

The mathematical description used in thin report to represent a nonlinear system is

the functional series:

f(t). a hl(() x(t-r) dr + 1f 0 h (T,, 'r) x(tT 1 ) x(t- 2 ) dTIdT2

.. + , .. _ hn l f..0... f n) x(t--l)... xft--,n) d-r ... d-rn+..

where f(t) is the system output, and x(t) ts the system input. The first n in this
series is the ordinary convolution integral that Is umed for linear syetern analysal The

other terms ate generalizations of this linear convolution term. In linear system theory,

the function hi(t) is known as the "impulse response." !- sectior 1.5, the function

hn(t ...... tn) will 6Is shown to be a generalized impulse tcv.j )w..e. In this r port, 'he

I0



limiLd of integration, unlesa otherwise indicated, will be from -o to ao,

1. 3 HISTOHICAL NOTE

"ihese Zunctionals were studied by Volterra (I) early In the tvilleth oer~tury. In
1942, Wiener (2) first applied the functional series to the study tof it nonlinear electrical

circuit problem. He was concerned with comput'ng ine output moments of a detector

circuit w~th a random Input. Later, he used this representation as the bsaih for a

canonical fovim for nonlinear systems (3).
More recently, the functiona& representation has been Investigated by a number of

workers. Bose (3) investigated the caulonical form problem and developed a system

that overcame many of the difficulties asioaiated Ywih Wiener's system. Brilliant (4)

was concerned with the validity of the functional representation, and found that systems
satisfying a certain continuity condition could be represented. He also showed that the

representation was well suited to the combining of nonlinear systems.

Wiener and others have extended the application of this functional representation,
in the random input case, beyond the results of Wiener's paper of 1942. Wiener (5)

developed the rigorous theory for random (white Gatussian) inp-its and applied the theory

to such situations as are found in FM spectra. Barrett's (6) paper is an excellent expo-

sition of the state of this theory at the time the present work was undertaken.

1 .4 COMPARLISON OF THE FUNCTIONAL APPROACH WITH OTHER NONLINEAR

METHODS

The analysis of noalinear systems has been an interesting problem for many years.

it is therefore of b- :..6t to compare the prmetnt state of the functional approach with the

princlpal classical methods. There are twu ti,ain classes of solutions to nonlinear prob-
levis' trunsient solutions, and rteady-state solutions.

Transient solutions are obtained classically by the solution of nonlinear diffofential

equations (7). For first-order equatirns, solutions can usually be obtained formally,

although numerioai integration procedures may be required. However, buly special

forma of second-order equations can be smwvd. Force-free soiutions for second-order

equations can be found with the phase -plane method - even for extremely violent nonlin-

marities. Examples of violent And noihvioleot nonlinearites eve shown in Fig. 2. Gen..

erally, numerical techniques must be used to aiulve higher-order equations.

Sinusoidal steady-state solutions can be obtained for systems in which the first

harmonic is the only significant term. This im the basis for the "d, scribing function

method" (8), and for some others. System order i0 not a llmiting factor, nor, generally,
is the violence of the nonlinearity.

The functional series (Eq. 1)is a very general method for repre-'iting nonlinear

systems (see scs. 2.1 and 6.8). However, at least In the present state of these methods,

it does have a definite practical limitation. If the nonlinearities In a system are too

violent, the number of terms required for a close appro,.tmation becomes very large.

2
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Fig. 2. Violence of nonLinearities: (a) nonviolent nonlinearity(vacuum tube with "medlum" signal); (b) violent non-linearity (ideaL clipper).

i - A"
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Fig. 3, Application graph@: (a) transient solutions; (b) toaady-otate solu.tiono. (Unbroken lintu show the region rovered by the functional
repraenta.tion - broken Linea show the region covered by the cla..• ica- mrthods.)



It woold then be necessary to res.). a computer, and. a great deal c the v-luu r(a the

method would be lost. H-owever, if th,. nonlinearities are sufficiently smooth, the. trang -

tent response of a system is determined by thu first few terma of the series, and there

is little limitation from system order. Also, steady-state solutions do not require thAt

the first harmonic be the only significant term

Th. comparisons that have just been made are Illustrated graphically in Fig. 3. The

shaded areas show the regions of effectiveness of various methods of anakyej,. However,

the graphs shruld not be taken to mean that these methods can cover all systems in the

shaded regions, but only a significantly large number.
The fi-st problem in 'I stem analysis Is to find a suitable mathematical description.

This description is called the 'system representation." The functional representation

studied in this report has three important properties.

(a) It has &n explicit Input-output relation.

(b) It facilitates the combination of mystems.

(c) It allows the considevation of random inputs.

If a representation has an implicit - rather than explicit - ip':tt-output relation, it means
that the whole problem must be re-solved for each different input. (The differential

equation representation is implicit.) Property (b) iur important because the electrical

engineer spends a great deal of time "putting things together." The effect of random

inputs is a problem of grent interest to the engineer.
The classical methods based on the differential equation have none of these proper -

ties. On the other hand, the significance of transform and convolution methods in linsar

system nnplyonv ,..os heavily on these popey.4tes. Therefore, these three properties

give tnree distinct advantages to the functirnul representation as compared with the

classical nonlineav methods.

1.5 INTERPRETATION OF THE FUNCTIONAL bRIES

Having indicated the position of the functional representation in the general field of

nonlinear system analysis, the writer would like to present an interpretation of the

functional series. First of all, the series (Eq. 1) can be viewed a,4 omnries of time

functions:

f(t) WM(t) + fY(t) + ... + fnt) + ... (2)

where

f n(t)" . . h (I(Tit .. ... Tn) x(t-T]),. x(t-,rn) dTI ,.. r (3)

That is, at some time ti we have a series of numbues fn (tI) that add up to give the

actual value of the system output f(ti). Also, each of the ftu.ctiono fn(t) is in,-jn from
Eq. 3 to be thp result of a convolution operation on the input time function x(t). Tile
first term. W.(t), in particular, is recognized as bei - tfe result of pi'.ting x(t) into a

4



linear system with art impulse respunse, h tt). Indeed, each term fn(t) can be viewed

as the output of a system wit: input x(t).

To tax., advantage of this idea, we introduce an

operator notation. In this notation, if vu- have a gen-

_4 o.-al nonlinear syutem with output :{t) and input x(t), as

Illustrated in Fig. I, then we can write f(t) .x(t)I,

or if we make Yhe time dependence implicit, f r Hx].

Fig. 4, Nonlinear system. Theis +he symbol H represents the operation that the

oyster-. makes on input x to produce output f. In dia-

gram form, a nonlinear systemi iLi then represented as shown in Fig, 4. (The usual
operator notation W is replaced by L in this rep ." .)

The first term can be viewed as a linear system operation, and therefore

fl(t) 2 nj~x(t)]

or

f - 'HIM

where the subscript "1" is added to the H notation to denote tuat the operation is Alnear.

Now, a linear system is specified by means of its impulse response; and thus, associated

with the linear system Hi, there is an impulse response h,(t), and

f t It f hi(-r) x(t-,r) d-r

Now, itic .... Ad lem in the se.ies (Eq. 2) is

If the input x(t) is changed by a qain factor c to give a new input ex(t), then the new

output, 9 2 (t), is

C2 (t) .W/ h2 (r1, T,) xe(t-il) xe(t-,'r) dldr,

ar

112(t) to C2 1`tW

Thus, the second term is the result of a quadratic (or squaring) operntion. In the ')per-

ator notation, then, f2 m ',[x], where the subscript "12" indicates that this is a quadratic

operation. Similarly, f3 0 U3 [xJ and, in general, fn - H n[X" Associated with each Hn

It the function hn(ti ... It n), and

tn(t) hr... f'-(d... x(t"l) ...X(t-) d-idn



In the light of these remarks, Eq. I can be rewritten as

f H [x + I2[x]+ ,. + .. [X' ... 16)

That is, the systen H has been broken into a parallel conibinaion of systems H n, aa
shown in Fig. 5. This is the deeired inte:r-

p-:eLition: The functional reprefientation

-' epresents a nonlinear system as a par.

slidl bank of eyotoms H,, thiat are nth.
order nonlinear systems and have an
impulse -response function hn(t 1, . tn)

associated with them.
The next task is to show how theme

functionj hn(tit ... tn) c;'n be interpreted

as impulse responses. The linear case

is well known. If f, a HIM(x, and x(t) =
Fig. 5. Block diag. am fur tLe functional 6(t+T), an impulse at time -T, then fl(0)

representation. nh(T), where h,(t) is the impulse response.

Now consider a generalization of the second term of the functional series

112 (t) If h,(,r1, T,) x(t-,r1) Y(t-"r2) d-rlId-r2 (7)

and represent this operationally by

"Ui.,(xy) (8)

This operational form will be considared tri #.reater detail in section 2, 2. The difference
between f2 o H12[x] and g2 , #, 2 (xy) should be noted. The square brackets denote an actual
system operation, and the parentheses denote a mathematical operation on a pair of func-
tions. Such a form (Eq. 8) cannot occur by itself uecause only single-input systeme it. v
being studied. However, it can occur in combination with other terms. Gonsider the

system operation f2 , i2 [X+y].
Using Eq. 4 (the actual functional relation) with Eqs. 7 and 8, we obtain

f2 - HU(xx) + 112 (xY) + j!.(yx) + 9j2 (yy)

but h 2 (tl, t 2 ) is a symmetrical function, and so

f2 = 12 (x
2 ) + ZBjZ(xy) + kiz(y 2 ) (9)

where xx a x 2 and yy y 2. In the functional form for the second -order case (Eq. 7),
with h,(tl,t 2 ) 0 hZ(tjt1), the symmetrical function (h 2 (t ,tz)+h 2 (t 2 ,t 1 ) /2 can be formed

and subsLituted for h 2 (t',t 2 ) without affecting f2 (t). This pro.edure (5) genera-.zes to

hn(tip .. ..t ), and so it will generally be assumed in this report that hn(tIl ..... tn) is R

6



symmetrical function in te, t2 ..... tn.

In Fq. 9, UZ(xy) has Luen obtain.3d, hut it is ia combination with two other terms.

Figure 6 shows how _ 2 (xy) ca., be isolated experimentally. If the mndic-cd operations

were norformed sequcntially, only ov-

system 11, would be needed. In the system

"of Fig. 6, if x(t) a 6(tWrl) and y(t) a 6(t+T2),
. then the output p is p - 112 (xy). und, at

-- 4 time 0, p(0) a h 2 (T1 , TZ). Thin is proveda

by substituting theme values of x(t) and y(t)
0 7 Ein &%.j. 7. Thus, h,(t 1.t.) can be inter-

Fig. 6. Apparatus for isolating l12 (uy). preted as on impulse response In ai mpnner

similar to the interpretation of the linasr

response h,(t). This approach can be generalised to the nth-order case, and all fun• -
tLons he(tie ... ,tn) m•Ay be called impulse reopcases. In section 4. a we shall bs con-
cerned with measuring these ttmpulss responses.

To summaries, the functional series mery be regarded a" representing a nonlinear

system an a parallel bank of nuolinsar sabsyateins (or operators). Each of these sab-

syutems is specified by an impulse responsi, hn(tI1 .. .

1. 6 SYSTEM TRANSFORMS

14 .hci 'nnise responses h,(t1 ... ,tn) are known for a system, then the output f(t),

ior a given i._ . Ajt), can be obtalipd frnm ,Eq. i. However, the analysis of linear sye -
tems has been greatly aided by the fact that "Ouuvolutlon in the time domain is multipUoa-

tion In the frequency domain." An analogoup result holds for nonlinear systems - except

that multiple-order transformations must be used.

These transforms are det' id by V.. transform pairs,

Y( ... )f...f y(tl ..... tn) exp(st...+Sntn) dt ... dtn (13)

and

y(t.....) -n..fY(,...n) e -a t...-8tn)d, ... don (11)

Appropriate contours of integrafion and values of aI, a,. and so on can be chosen in a

manner similart to that in the linear transform case to give Fourier or Laplace trans -

formations.

The value of the higher -order transform theory lies in the fact th;A,

f....- rh n(Tj ...... r n) Itn(tI-Tl .... Iant-,n)d d-, .. dT n (

,ma an nth-or0,zr transform, H n(SI .... in) Kn(s 1.... 1



Now, consider

f(•)(tl'ta) =,fJ h 2 (-rl 4) x(tl--r) x(t,-r,') drld 2  (

which is -a special case or Eq. 12, and thus will have a transform, F(2 )((.812) =

HZ(sl, 92) X(sl) X(x 2 ). We are interested in the special case of Eq. 13, with t, = ta = t.

Then
f2() f2)t~) //h,('l, T.) x(t-TI) x(t-T?) dTldT2 (4

which is the second term in the functional series, Similarly, the output o _..? r0order

system can be made artificially a function of tI ..... t1, in order to take advantage of

transform theory. The discussion at this point is only intended to define the transforms

and indicate their possible application, In Section III we shall show how the transformb

can be used to obtain the systerm output,

1.7 SUMMARY

We have given an introduction to the functional representation for nonlinear systems.

This functional method can be used to solve a large class of nonlinear problems in which

the classical methods fail, but it does have certain limitations, certainly, at the present

stage of development, Furthermore, the functional representation has three very desir-

able prof.. - 'hot ma)'e it a me'hod of considerable strength and value.

We havc iwen that the represent•-', may be viewed as a parallel bank of nonlinear

operations or subsystems, These subsystem. are generalizations of the ordinary linear

convolution operation, and are specified by imijulse responses. Finaliy, the higher-

order transform has been introduced, and its pot.llial use indicated.



II. AN ALGEBRA OF SYSTEMS

2.1 INTRODUCTION

The second property of the functional representation li that it facilitates the com -

bination of systems. This property was noticed by Brilliant (4), and he obtained formu-

las for finding the impulse responses L d transforms of the component s':bsystenis.

However. theme formulas are difficult tu use, and do not indicate how the components of

a system combine to produce the over-all system. These difficulties can be ovorcome
by mneans of a representation in which the whole sy,•.n.i can be expressed by a single
equation. This representation, which is cnlled the "Algebra of Systems," makes use of

the operator system notation that was introduced in sectIon 1. 5.

N. o FioL m r

1b)

Fig. 7. Examples of nonlinear systems. (a) nonlinear capacitor;
(N) do motor.

We are primarily concerned with a certain class of physical systems. In this class,

the systems are composed nf:
(a) nonlinear subsystems with no memory (that is, the outputs depend an Lhe instan-

twrieous value of the input and are independent of the past or future values of the input);
(b) linear subsystems that, in general, have memory.

This class of systems is of a very general nature. The only class ol sybLem that Appears

to be definitely excluded As the hysteretic system. Two examples are shown in Fig. 7.
The nonlinear capacitor, viewed as a system, is equivalent to an integrator followed

cy a nonlinear no-memory operation. We can see this by considering the capacitor equa-

tion

e - n(q) (i5)

where e represents voltage and q, charge, and the functi • r represents lte nonlinear

relation betweer -harge and voltage. Then

9



Jt

q(t) j i(t) dt (16)

where i(t) Is tho current. Thr block diagram of Fig. 7a shows this relJ:.ion between cur.

rent and volage.

The relation between the speed w and the armature voltage e of the do motor is given

by

e a {kw+n(w)+k 2 }w (17)

where kI and k 2 are constants, and n is a function representing the n;onlinear character-

istic of the motor. Thus, the motor in equivalent to the circuit shown in Fig. 7, with

C a k2 (see Truxal (8)).
We know how to describe the linear system and the nonlinear no-memory system.

The linear system can be described by its impulse response or transform, and the non-

linear no-memory system can b a described by a function relating its input and output.

The use of the functional representation depends on our being able to write, or approx.

imate, this nonlinear function by a power series or a polynomial. For example, the

saturating system of Fig. 2a can be approximated over a desired interval by

f uaAx + a 3 x3 + ... + ,,+lxZn+l (18)

The ideal clipper of Fig. Zb, on the other hand, would require an extremely large n for

apprnv'4 mPton in the form of E-q, 17. This is a practical limitation. Even very violent

nonlinearitlua, A.... the ideal clipper. non, theoretically, be very closely approxi-

mated by a polynomial.

Now the situation is: We are given a syPeem In which the component subsystems are

linear, or nonlinear no-memory, and we want to domtibe the over-all system by the

functional representation. To lo this, :he subsystems (which we know how to describe)

must be combined. Therefore, the ability to conveniently combine systems is very

important in the use of the functional representation for system analysis.

It can be said that not only is the ability to combine nonlinear systems an important

engineering problem but also thit this ability is a basic need in the use of the functional

representation. The algebra of systems will be developed and the relation to the system

impulse responses and transforms shown.

2. 2 FUNCTIONAL OPERATIONS

We introduced the operational notation in Section I. For a general system that oper-

ates on an input x(t) to produce an output f(t) (see Fig. 1), f(t) - U[x(t)] -r f -=11[x, where

t is implicit, The system operation (Eq. 3) is denoted by fn a kn(x]. Then, the funu-

tional series (Eq. 1) becomes f a III[xJ + AZ[] + ... + Hn(X] + .... If this fornm is

truncated at some ljn[x], it Is then a functional polynomial.

Now, if fn wln[x], then

10



En x ,[Fxl 2 ,Enlx] * " (19)

where e is a constant. If f(t) is the output of system _. with input x(t), and f((t) is the

output with input ex(t), It follows that

f C , H[x] + • li2 x] + ... + nl(,[2,, + ... (20)

The usual Taylor, or power, series -ao

a 4 a2( 2 + ... + anI(n + ... (21)

and comparison of Eqs. 20 and 21 shows that the functional series is very mimilar to a

power series. It will be shown in section 6. 6 that there is a strong mathematical con-

nection between them. This relationship serves to relate the functional serims to ordi.
nary mathematical meoles.

We have represented the generalized second-order operation

g 2 (t) uffh (l, 'Y x(t-' 1 ) y(t-r 2 ) dld-r (22)

by

g2 - H2(xy) (23)

When x a y we have, g, -a gz(xx) u HL(x2 ), and since this represents a real input into

the system H2,

•z( Z) 2 i.[X] (24)

Terms of the form of Eq. 24 do not occur alone, but I t!ombination with other terr.is. If

f w H2[3e+y], then from the defin' '.or of U2 ,

f(t) h2 (T1I, T2 ){x(t--r)+y(t-T 2 )}{x(t-.rt)+Y(t-.T)} d-rldT

"wffh('r,, "rzz(t-'rI)x(t-'r2)+x(t'Tl)y(t-'r,)+y(t'•Il)x(t--r,)+'(t--1 )y(t--r2)I d'rld T.•

But, since h(rI. "r2) Is symmetrical,

ft M/!h(•,r,,,)•x(t'• l)x(t--rZ)+2x(t-,rl)y(t--r?)+y(t--r )y(t--•2)I d-rld•z

Uf h(,'r., 2 )x(t-'rl)x(t-,') d-rldy 2 ÷ + f h(, r)x(t., 1 )y(t-,'.) dridT,

+ Jfh(-r,. rj y(t-i' 1 ) y(t-i 2 ) d-rd-r (26)

ii



,g t•-ms of the definitions c. qas. 2? and 23, Eq. 26 can be written

f tj.,(x 2) + ZH2 (xy) + H2ý(y2 ) (27)

This expansion of Hl2 [x+y] can be obtalaed divectly in the short notation, by the following

sequen. a of steps:

ff 2 _•2 x+y]

2 _H2lx
2+Zxy+y )

a H (x ) + 112(xy) + _H2(y 2 )

H 2 [x] + ZhZ(Xy) + Hz[y]

and this is validated by Eq. 27, Thereby, the foim ,2 (xYW occurs in combination with

other similar forms.

Similarly, for the third-order case, f3 - U3[x+y] - H3 ((x+y) 3 I"13 (x 3+3x y+3xy +y )2

or f 3 * -H.!(x 3 ) + 3H'3 (x2y) + 3I" 3 (xy 2 ) + 113 (y3 ). This directly genera•lses for the nth-

order case, Not only is this a useful interpretation of the functional operation, but it

will almo be shown, in the course of this report, to be extremely useful for dealing with

Input'+ ' , oompomed of sxus of simple functions such as sinusoids. Also, this is

of areat irn.•-ranoe in the algebraJr e'vpn,,I4otn used for determining the system impulse

responses and transforms.

We have now accomplished two aimm:

(a) The notion of functional power series hnt, 'tan introduced,

(b) The concopt of non"1 Lear opt. rations has been defined as generalized multilloa -

tion operations on multiple signals, For example, H.3 (xys) is an operation on a triplet

of functions x(t), y(t), and *(t).

2.3 SYSTEM COMBINATIONS

There are three basic means of combining nonlinear s#stemq - addition, multiplica-

tion, and cascading. The addition combination of two systems involves putting the sarro
input into thv two systems and combining the two outputs in an adder. This inshown in

Fig. Ua and is written algebraically: L - . + K, where L is the combined system, and
J and K_ are the component systems.

The multiplication combination is similar, u;ciept that a multiplier is vub'titutf.d

for the adder, The diaigram is shown In Fig. 8b and the €ombin-~tion is written

L a .1 K (28)
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Fig. 8, System oomblnations,

Ii (U ad) -

Fig. 9. Illustrating the use of brackets,

In the cascade combination the output of one system Is the input of the other. This
is shown In Fig, Bo and is written I. a _ * LC. Expressing it in wordcr, we can use "plus"

for +, "times" for -, and "cscade" for *. Then, for example, J + K As read, "Jay plus

kay."

It is convenient to have a bracketing operation, in addition to th.i other operations.
This is used to remove ambiguity from the algebraic expressions, For w ! tnpls, the
system (JQ*K) + L is the uassade system J * K plus the system L. This im shown in
Fig, 9&, However, the system j * (K+L) is the system 3 cascaded w.,ith the ,ystem
(K,+L). This combination is shown In Fig. 9b. The branke,, then, hasa the same grouping
metninug that it ugu.ally asa in algebra, and all terms in p.. jnn.ses s peoif,: a composite

system.



For the system operation -Lx), wher'e L J + K, we can write

(,T+K)[xJ (..9)

Similarly, if . * K, we can write

f W '*.K)fx] (50)

Equation 30, however, has another form. Lot

y - K[xj (31)

Then, by the definition of the cascade operation (see Fig. 8c),

f. a[y] (32)

Substitution of Eq. 32 in Eq. 31 yields

f - J(K[x]] (33)

an an alternative lormn fur Eq. 30.
Now that we have the basio definitions of this algebra, we shall proceed to develop it.

In view of the addition definition, the functional representation id seen to be an expansion

of a system H, and so H - Hi + H2 + ." + in +...

Now, this algebra will have two uses:

(a) To expand a system in terms of its component linear and nonlinear no-memory

subsystems.

(b) T1o allow block-diagram manipulation.

In order tu 1,L -., +h-o. manipul•tions, or rearrangementu, certain algebraic rules
must be devvloped. For the addition a,'r1 muitiplication operations the rules are similar

to those usually followed in algebra. The rules for the cascade operation are somewhat

different. These rules will be given in the form of eight axioms. The proofs are based

on the physical significance of the algebraic operaticin,.

The first two axioms are umodrned with the addition operation.

Axiom 1. J+K•*uK+j (34)

This combination Is illustrated in Fig, Sa. Axiom I states that both J + K and K + J

stand for the additive combinatica of Fig. Sa.

Axiom 2, j + (&+L) a (Q+JS) + L, (1)

This axiom is illustrated by Fig. 10a. The diagram shows that i does not matter
whether K and L, or I and K are grouped togethtr.

The next two axioms are like axioms I and 2, except that they have plus replaced by

times.

Axiom 3. _.K " 1 (36)

Axiom 4. J. (KLj') " (Q._K) _L (37)

The diagram for the axiom 3 combination i Fig. Rb, Axiom 5 state& that both J_, K

14
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and K I stand for this combination F'Xure 10b is the diagram for axiom 4. It -fr's

not ,natter whether K and r• or J and .K are grouped together,

Th,ý Inst axiom of this group concerns the cascade operation

Axiom S. J ' (K**L) a (j*K) * L (38)

This axiom is illustrated by Fig. 10c, where it is shown that the C ) oper.Mtton has no
physical significance. It is simply a mnatter of algebraic uonvenioncC.

Then, there are three axiom* dea.ing with combined operations.

Axiom 6. L • (Q+K) a (L.J) + (L-.,) (39)

The diagram for this axiorn is Fig, Ila. Axiom 6 Is true because

£ 0 x(y+N) - xy + ya (40)

where x, y, and z are the outputs of L, J, and K. respectively.
A similar axiom holds for the plus and cascade combinat:or..

Axiom 7. (!+iK) * L w (t4'L) + (M*L) (41)

This Is shown in Fig, lib; the two systems illustrated there are equiva.
lent

A6'nm ', ,K) * L. (*t,) - (!4*L) (42)

The two equivalent systems for this axiom are shown In Fig. lao.
It is also important to know which rearrangements are not legitimate. In particular,

we note that, in general,

i l l s So,• (uiI• lls

rig. 12, Illustration of combins ons,
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J_*KK_*J

1, * (1+_K) 0 (L*J) + (L*K)

L * T.-K) (L*j) - (LK) (43)

Block diagrams for various expressions are given in Fig, 12, and those relation.. will

be demonstrated by means of simple cuunterexamplem. Let T[xj , ax , 6[xj • bx , and

[4[xj - a& , where a, b, and a are constants. Then (*_K)[xJ - a(bxz) 2 • ab 2x 4 , and

(K*J)[xJ - b(ax 2 )2 a a 2 bx 4 , with the result that (J*4)rx1 l (K5*J)[x], and thtus Eq. 43 in

established in this special came. We also have

(L*(J4.K))[X] b c(ax)2br. )2 , o(eab) 2 x 4 (44)

and

((t,* 2)+(L*K))[x] • o(ax')2 + o(bxz2 ) a ,(a2+b 2 ) x4  (45)

Since Eqs. 44 and 45 are not equal, Eq. 43 has been j1.stified, lNTow

(&*(J.,C))[X] - C(U 2.bx 2 ) oa 2b2 x8

and

((Ld).(*O))[x] a c(ax2 )2 . c(bx 2 )1 • a2 i-2 b2 xa

and so Eq. 43 in valid,

The-,t k.. •, ,'',vnr, two important speoial oases:

and

k * (+_K) - (L_,J) + (LI*K.) (47)

Equation 46 is known from the theory of linear systems (9). To prove Eq. 47, let

![x) •y (48)

K[x] • d (49)

then (jl*(Q+K))[x] a Ll[y+zj, But LI is a linear system, and by superposition, _lfy+zj a

L1 (yj + L[z]. Substituting Eqs. 48 and 49 in this expression gives

--... _l1[.[X}Kx]] -=L[RI•l + OK[

or

Li * (J+_) - (iIt) + (*K)

and Fq. 47 is prwed.
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2.4 ORDER OF SYSTEMS

As we have mentioned, the funtional representation expands a system J4 in a series

H a _ I + H + .. *+Hn + '-' 
(00)

in section 1. 5 Hj1 was defined as a linear system, N, as a quadratic system, and so on.Hn Is called an nth.order system, and H-n1 x] - C"H-"nx], where x is the Input jignal,and C is a constant. Equation 50 shws that this order differentiates between the termniin the functional representation; that is, the first term Is linear (first -order), the see -ond is quadratic (second -order), and so on, It is possible for a system to have a do biasat the output which is unaffected by tae input. This bias can be taken as the result of azere-order system Ioo with the propnrty that
Sa H+ . .+ , H +n...

where Ul0 is specified by a constant ho. However, since U. does not have any input.output relation, we shall usually not include it in the functional nerias.
So that a combined system can be expanded in the functional series (Eq, 50), theeffect of combinations on or0der must be noted. The system I,, withL m-An + -Bm 

(51)
L A tB 

(sicontains both nth . and uthm order parts, as Eq. 51 shows, The system L, with

is a system of order m + n. This order follows because

jiSxj] u Jn[Ct] Dm[X. lc 4m+nJ3]

The cascade system H, with

Sa An * Pm 
(53)

is a system of order mn. This is shown by

_1ex) - An[n.l[ex1 - (ECm). A•(ails]- zunanigxJ

In which we have used the alternative ca•sede definition (Eq, 33).Now that the effect of system combination upon ordering has been exp~ained, It Ispossible to expand a combined sa itern in the funutional serive or the functional pc yno-miol. Before giving an example uf a combined system, several special systems will be
considered,

18



2. 5 SPECIAL SYSTEMS

We shall now introduce the r.otation for some special systems. 7he r.nonlinear no-

memory system will usually bo denoted by N, so thrit f v N[xl. In polynomial or power-

nerie• form.

'_ + N~Z + .+ Nm + (54)

and then

fvnix+ 2ne 2 +,+nmxm+ (55)

A particular linear no-memory system is the identity system 1. which hao the defini-

tion x • u[x].

The zero system Q is defined an

0 a 2[xJ (56)

In algebraic equations, 0 will be used to denote the system _.

Theme rather obvious properties should be noted:

Hf +f"

and

I* IiH*_I-H

In this slgabo,, it - en convenlint to replRooc the nonlinear no-memory operations
by multiipication operations. To do this, conal-l:r the term Lim * H. By virtue of the

definition of N given by Eqs. 54 and 55,

Sm~x]. nmxm (57,

Now, If x a H[y], then •.(x - .[Hli[y]] - (Qm*U)[yj, and from Eq. 57, Nm[X] w
nm (H[y])m, By definition of the multiplication operation (Eq. 28) of this algebra, this
procedure gives

ki X nmj - J4.. H (5e)
m time.

Then, if we define

m times

we have

where nm is jut gain constant, The no-srem1- t-'...."-! Lm has been replaced by a
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multiplication operation thor. hy, and a sum of no-memory systems H m can he rpplaced
by a sum of multiplication operations.

Z.6 EXAMPLE I.

The combined system will now be illustrated by an example, Let us consilerr the

system of Fig. 13 in whiuh I a L * N * B1  This system can be viewed as an ampli-

Fig. 13. llluetrAtivu cascade system.

fier with nonlinear distortion. A1 and D, are linea" systemR favid _N is a nonlinear no.

memory system. Let N have a linear and a cubic part, so that N a N1 + N3 . Then

ý - Al * (NI+Y) * B_

and by using axiom 7 (Eq. 41), we obtain

L_ A I (NLie 1 +N3 e*B1 )

9JY Use Of' 44.,4, wk' •.,.' .,XVC

Id-& a • A, N *tB, +A- , *---3 * B!

When _Nl and N_. are replaced by multiplication operations, we have

or

L• nAi * B + n3 Al *B3

since A is linear. Now L = L. + L3, whereL a 1n1A, * BI, and L3 •nA 1 *B3

This example illustrates how this algebra can be used to dancribe a system in terms

of its component subsystems. Next, we want to relate the algebraic ..epresentation to

the system impulse responses or transforms. Once this is done, we can proceed to find

the system response to various excitations. But, first, two other topics in this algebra

must be considered,

2.7 CASCADE OPERATIONS

Strictly speaking, the cascade operations involved it,' iombinhg these linear subleys.
temen and no-nionory nonlinear subsystems will not invo, e c..scading nor.linear systems

20



with memory. However, algebr c simplification is often obtained by grouping a number

of subbysterns to produce n composite subsj..tem that to nonlinear and has memory (see
see. 2.6 for an illustration of this point), This section is concerned with nnnlJnear sys-

temn with memory, in cascade.
The ca*-Ade system An * Vm has been shown to ue of order ian. Now considet- the

system L. in which

"A2 * (Rn+.m) (60)

To determine the order of this system, we shall devialop an expansion for A2 * (L3n+m),
Now

kAx1 - (A_**(-,+Qm))[xl - Aj[_Bn[F]+gm~x]]

Let

y - [ lIx] (61a)

z • Pm[x] (61b)

and then

L_[x]• Zys

a A2 (y2 ) + %a(yr-) + A 2 (M2)

Now, subL Otution Of Eqs. 611 an% 6 1b gives

14x a ~((n~x)')+ 2A2 (Pn(xJ.Q [YJ) +.

"Then if we define

(_A 2o(Bn,_m))[x] zmX] j[]

with the use of the operation "o", the system L becomnes

j! a 6 0 (L3.) + ZA2 0 (§Ln-.~f) + A2 0 m)(z

(Note that A 2 0 (m,) &- aý J.
Now that Eq. 62 has been estabjished, we see that it ck- be quio;:ly obtained from

Eq. 60, as follows.
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_dj *•

L AZ *(1)n+r-m)

"2- 0 (n2n rLn -m

- 0A° + Z, n (jn'rm)+ A.° (V2

The term A, 0 (Bn.*m) is an operator ot order m + n because

(A2O(13n.Cm))[Cx] - A2(BllnrX1. Cm[CXl)

. A2 (,•+n_•jxj. •-m[xJ)

f m+n A2(_§n[x]. .m[xl

cm +n(Azo(Ln, Cm))[xJ (64)

Therefore, Eq. 63 shows that AZ * (Bn+rlm) can be expanded into three operators of
order Zn, m + n, and 2m,

The case A3 * (jjn+rm) can be expanded in a similar manner:

'1 0 LrG)-A (;D+rQ) 3 A3 0 (j' ý -30(,r.

+ 3A3 U (@B.g! mj - (C)

"whe': A 0 '-C.) is of order Zn + m, ano

(,o(_. .x))[x. g(_,J. [xj)

This expansion of the cascade uperation can be generalized to any order. For
example,

Ah * (Un+-m+... +,r - As 0 (Dn÷m+. ?.,-)

and has a typical term in ite expansion:

As 0

a terms

whioh is of order n + m + ....
!n this manner, a cascade :ombination of systems can be sklit up into a sum of single

oper.ations. Each of these simple operations has a singlo transforrm of impulse response
as•eoolated with it, which will be given later.
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2.8 i,'EOBACK SYSTEMS

Example I was for a feed-through system. Therefore, obtMnihg its funatinnal expan-

sion was a straightforward procedure. We shall now develop the procedure for deter-

mining the tunctional expansion for a feedback syst,)m. The single -loop feedback system

is shown ii, Fig. 14a, in which A and a are nonlinear mystems that have a known tune -

tional expansion. Figure 14b is an equIvalent system, in which the feedback system of

Fig. 14a hum been split into the system A cascaded with a simpler feedbacK system.

by & s gien b

L a *(

iii

*

|di

Fig. 14,. Si Nonlinear feedbaok system. (b)taquivalent syste Lh.
bee System i. (d) Combindtion of A and K..

Let R * a s i e and let the simpler feedback system be denoted explicitly by L, as
shown Figr. 14a . Then the feedback system of Fic . 14a, which i explicitly denoted

by F, is given by

i 'A * _.. (6a)
as shown in Fig. 14d. Since A is known, K_ can be obtained from Eq. 6'. once L_ has
been determined. We shall determine L first and then find K from Eq. 65, because
this ii easier than developing K~ directly. (In many problems K can be found directly.

In this general case, such a procedure is difficult,)

For the feedteck syst,,m L, output g is related to ,on... by
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g - x + H~g]

which relates g implicitly to x, However, it is desired to have an explicit relation

ff a !AX) (67)

and no, It we substitute Eq. 67 in Eq. 66, we have
L.xJ - a + U[11J)J

Writing this an a system equation, w4 obtain

k*I "+ H * L. (68)

where . is the identity system. Equation 68 is ma inmplJoit equation for L. Now, we have

assumed that a A + A2 +,, + A + .. , and B - B + B + B + Therefor

the expansion

SOUKI +HZ+ , -n +... (6))

ic known, since H * ,

Now, we desire to find L in the series

ig. w g + D2 + ,'.. + -s + ... (70)

Therefore, Eq.. 69 and 70 are substituted in the system equation (E4. 68), and

Lil + L 2 + L 3 + ,.. - _+ (+_HZ++ 3 J.. ,) * (1I+LZ+L 3..) (71)

N f. t1 . -in he folnd in term's of the H a by equating the nth -order system on the

left-h.and uuirl. .- q. 71 to the nth~o1,c14, ,, uLem on the right-hand side, So that the

order can be reoognized, Eq. 71 must be expanded as follows:

L-I + L + L3 + ... z+

o(e3,H3( Z

+H
+H0(Lz,)+...+,

Equating equal orders then yields:

L_ a 1 + HI * Li (72)

L,2 ='~ k *L 2 + H2 0(01) (73)

L3 n1 ti 3 + 2 0 ( 1 2  H3 '(LI)(4

and so on.
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By way of explanation, if y = A[xj and z - -y, then z r -.A[xj. Now, if g = _[xJ, ther
f a g + z B _[x] + (-A[x]). Taking f A Nix] - R[x] + (-Aix]) gives a w:.stem equation

H B + (-A) or H - B-A

This definet the minus sign in this algebra. The minus, or subtraction, operation obeys
all the rules for the addition operation. Thus by subtracting Y, * I. from both Acides of

Eq. '12, we have

191 - l (l*1,) -1 ý (w_]*1,) - (_1*il)

or

or
(L-t-l) * LI - (75)

because I * LI w jI. Equation 75 is, then, an alternative form of Eq. 72. i'n a similar
manner, Eq. 73 becomes

(1-H1) . LZ - _i2 0 zk• (76)

and Eq. 74 becomes

(1gl * L3- 11 0 (LI- 1 !2) + H3 O(k3) (77)

Now, if %% ... &d.. de Eq. 75 (formal justification will be given in Sec. VI) by the
inverse of (I-H1 ), which is denoted - th;n

(!'--ilr * (1-!!-) * LI - (L-ýI)1 ' (78)

But (I-HI)'1 is the inverse of ti-HI), and so (I-H1l)'
1 W (1-H.1 ) a I., and Eq. 78 becomes

1! (i--) (79)

(If y a ±J[x], then there is a I for which x a 9[y]. This K is the inverse of H wid we shall
denote K by II-1. The inverse in considered it, more detail in hec. 6.3. The inverse
of a lin~ear system is well defined in linear theory.)

Similarly, Eq. 76 becomes

and Eq. 77 becomes

-(- _') * (2H o(Ll.L 2 )+H (L3))

In thi, manner, 'he Ln can be found for the feedback sy- yr L.

The functi:- _1 series for the feedback wyetenm C ;s th in given by
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K=A *L

S(A• +A ÷., .)- (/L I+LZ+,..)

= A *Li1 + 2 o(L) + 2.6, o (Lj .i.Z) + A., 0 3L) +

and thla

IS, * =A (80)

!S 2 "A2 , (0-) (a1)

K -2a 0 (L..LZ) + A 3 0L (82)

and so on. The validity of the series expansion

K - K_ + K 2 + ... +K1 + .... (83)

will be considered In Section VI, but it may be said now that it is generally rapidly con-

vergent for sufficiently bounded input.
In any particulaLr problem there are two alternatives. We could use the equations

for LKn for the general case of Fig. 14a (the first three equationsi are Eqm. 80, 81, and

82), and substitute the particular A and L that are being used. A better procedure is

+

Fig. 15. Nonlinear servo system,

to work out the Ks, by the method just described, for each particular case. This is not

too difficult after some practice.

Am an example of this m•chod, consider the feedback system of Fig. 15. In this case

L a HI * N * (-L) (84)

where HI ns a linear system, and N mI+ N3V
This system is sufficiently simple that the series for L can bo obtained directly.

Equation 84 can be rewritten as

L - HI* (-) + n3H *(

and substitulton of the series L w L I + L2 + L 3 + ... tihis expressiu.i yields
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2+ - ÷ + . ... H1 * +- 3-!'-L3 -" 4 + n3111 * Q-L- 1 , -L

+ ( jnl -ýL)-+3n 3- 1 *(_Ln-.) , (85)

Therefore

_L6 - -I * L) (87)

b3 " "-11 * L3 + n 3 H- * (L-L) 3  (88)

Rearr,,nging Eq. 86 (in a manner similar to the rearrangement that gave Eq, 79 from

Eq. 72) yields

1 U (L÷!!)',* H1

Equation 87 is satisfied for 6z N U, and this is the only solution (see se. 6, 3). Rear-

rangement of Eq. 88 gives

k3 o n,(L+-1i)'l * H, * (*-L 1)3 " n3;' * (1.ti)l

Continuing this procedure gives L4, L., and so on. In particular, it can be shown that

b 4 =0

jd5 3n3hl* ((i.."l)2.3)

il6 a 0

4,9 IMPULSE RESPONSES AND TRANSFORMS

It has beon shown how the algebra of systems oan be used to combine systems, But
before the output of a system so described can be obtained for momns given input, this
algebra must be related to the system impulse rempc.axes and transforms. We shall
give the relation between the algebraic terms and the corresponding imipulse remponries
and transforms.

By means of this algebra, a system Id fi. expandled in a series L 1 + LZ4 ... +

L n +...~, where the L nare given in terms of the system's component subcs'stemui,
For an n th -order term of the form Ln + B or L AflxJ I* BnjxJD the corre -n-An-n Lkl A f
sponding funotiona) equation Is
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J' n . Vrl.... f r (t- 1r) . . .x(t--rn) dr I . n

Sf... f an(I ..... 'd) X(t-r') ... x(t-rn) drl . .. n

+ f ' f bn(' ....... rn) x(t--rl) . .. X(t- n ) d-rl ... de n

Therefore

In * 9.. ('r ) n a n(rI .... "rn) + bn(rI ..n - r n)

Hence, for the alg•sbrain term Ln, where Ln An + Hn, the corresponding impulse

response in

I n 01 ..... tn) a n (ti| ... tn) + bn(tI ... tn)

The corresponding transform relation is

L n(el ..... I on) - A n(NI .... #on) + B n (Oil .... on)

Similarly, it can be shown that for the simple multiplioation combination, with

_in+m - .. , B..,, the corresponding impulse response is

I n+m (tl# .... I ton+r) W anOil ... no) b ra t n÷11 .... Itn+m) (89)

The oorresponding transform is

Ln+m(0Ii .... Io+m) " An(il ..... In) Bm(sn+I .I. nn+m)

For the casoade situation, with !On '1 -A1 * In, the impulse response is

I n(t .... tn) v f a,(-r) bn(t I-?, t,"-, ..... tn-,P) d-r (91)

and the transform is

L n(A t ..... On) a A l(M i÷I+... +on) Bno(Nil .... led (92;

The more general cascade operation also has a relation with a corresponding impulse

response and transform. If

.. p+g+.. +r A-n 0 (Pp.gq* .. .PO~r) (9")

then
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+ +I.(t .... tp q .. +r) aF j ( T() bp(t- ..... t - )

X C q(tp+ "T ..... tp+q-'Z) ' d,,, " i ' n (94)

and

Ilp'q+.. +r(sl . pNq+... +r An(a 1 +. .. +4p, + p÷1 •...+8p ...q .)

X BS(sN .... *p) Cq(SP.I .... 1p+q) ... (95)

Some of these combined forms, am written, arw iot oymmetrioal, but they can be

symmetrized, if it is desired. As we have stated, the impulse response h,(';t, t2 ) can
be symmetrized by forming

h 2 (t1I t2 ) + h 2 (tt) (96)

2

Thu transform H1(s1 , M.) can be symmetrized by forming

142(h , 02) + H,(sZ, 81)-Z (97)

Similarly, for H3 (O 11 20 3). we can construct

I{• " s": sj)+H3( Its % ' )÷H3(z z )• (Z 3

+11 3 (03l, , 2 )+H3 (s 3 ,* sP d) (98)

In general, for Hn(aI, ..n.n) we add up the Hn with all possible arrangementa of

51 ... , an and divide by the ni ber of .rrangements.

Two examples of obtaining the transforms from this algebra will be given. For the

feod-through system 10 (see Sea. VI):

E L, + -L3 (99)

" n1 1 * • (100)

13 " n3AI *B_ (101)

Let A, have i transform, A 1(s), and 0, have a transform, B,(,). We want to find

Ll(p), the transform of •i, and L3 (film2' "3), the transform of L"3. MY application

of Eq.. 89.98, we havi L(s) - nAl(s) F 1 (u). From Eq. 90, P has P transform,

BI(l)Bl(s2), and B .]5 has a transform, B1 (s1 ) l($ u Dl(5). Equation lt4 then

shows that

L (41•, s. n nA (a+a+) BI(e1) BI(PZ) BIN



The aecusid sy•tem 13 an - x'r-. ile ot a feedback systein (sec soeL. 2. 8), with

L I (i+!y-I * H, (1()2)

L" - 1_,l * (I-LI) 3  (103)

L5 = ln3-, * ((I-• 1 )2 '. 3 ) (104)

Let H. have a tranbform, H1 (s) - A,/+a), where A )> a. Then (L+Il) has L transiorm

and, from linear theory, we know that (I+jI)-1 has a transform

I + HI(s) 5+K

Then, from Eq. 92, L, has a transform

a___ A * A (105)
L I MT ;+-a 0 $--x(15

Since (t-,q) has a transform I - LI(s) as /(s+A). (I-LI)2 has a transform

from kJq. 90. ,LO t.-jl,)3 has a trarf:;'.Ln

$I 1 s
I + A +A s3+ A

Therefore, application of .;q. 92 tW, Eq. 103 shows that L3 has a transform

L3(81 2'5.3) a s + sz + M + x 8-+- ;7+- w"4 A
L 2 3 1 3

Also, since (I-LI)2 1_3 has a tcansform

s 1 +-A s 2 +A 3(3'

L5 (Eq. 104) has a transform

Ls(l3nA _ 'I as)L 3 (s3 ,s4$1, 1 ) (107)I).. S + ,... + $5 + T' 7+-;-'A" R2 +A 3•(23 S'mS 1047)5

With some expericnce the transforms can be readll" obtained by inspection from the

atlgebraic equr•.ons. We are still not in a position to L., fi,,ese tran|sformrs to compute
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the system output for a given '..,jut. However, at the end of Section [II, these tranA -

forms wiit be used i'r ihis purpose.

2. 10 SUMMARY

We have oeen concerned with expressing nonlinear systems in terms of their linear

subsystems and nonlinear no-memory .u'asystems. The maJn tool for combining sys-

terns has been an algebra of systemi. The algebraic maLAipulations required for system

combination obey laws similar to those of other algebras. If the algebra of systems

were not used, system combination would have to prnrneed with involved formulas and by

a series of clumsy steps. Our algebraic notation consists of a system representation in

which only those aspects of the funotiolnl representation that are involved In bystem

combination are emphasized. This algebra applies the powerful concepts of operator

mathematics to nonlinear systems.

The relation between the algebraic representation and the system impulse responses

and transforms has been shown. Particular empnasis has been pltaed on the transforms

in the two examples presented.



ITI. SYSTE'I TRANSFORMS

3. 1 INTRODUCTION

We I.ave represented a nonlinear system in terms of its impulse responses

hr (t1 .... Itn), or the transforms H,(s 1 ... a n). 7'he system output, f(t), is ,.ven by

Eqs. 2 and 3, The problem, now, is to obtain thef ,nt), and thereby the system output,

f(t).

In Section I multidimensional transforms were introduced, and we found that the

value of these transforms - just as in the linear case - lies in their making it possible

S.

Fig. 16. Illustrative feed-through systern.

to substitute multiplications for convolutions. Not only is this true in calculating the

system output, but also in cascading systems, This in shown by Eqs. 91 and 92, and
by Eqs. 94 and 95.

Another reason for using transforms is that the form of the impulse responses, even

for c_'.rnq systems, is rather complicated. For example, considor the system of Fig. 16,

In this ease.

_L aLa BI *N _ * AI

and A1 has a transform A/(s+a), Pl has a tranurr, i B/(.+p), and nZ * 1. Thrrefore,

from Eqs. 90 and 92, .42 hat a transform

L (, 2 ) a A2 B (108)

(s 1 +s2 +p)(s i+f)(N2 *4)

Reference to Eqs. 89 and 91 shows that the impulse response is

It o r t2A ,-G (t ,- -r) -G (t - r)

12 (t 1 , t2 ) t2 Be"p'r AZ et2 dr

for t1 , t2 P 0. since A/(s+a) has an inverse, A exp(-at), and B/(so*1) has an invurse,

B exp(-Pt). The form of the limit follows because A, and -• are realizable systems,

and r is integrated from 0 to tI or t., whichever is smaller. Working out the integral

gives

(tYM(fA;' N -at' ""t2' -(P3-k)tl e-at' )'
12tl t1 . -2u/ e .

for t1 , t2 , .ndi tI t t., and
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(BAZ�)�{ t- e -at 2  -at- -a(-c)tZ

fr. ti. tw a 0 and t 2 < t1 . Comparing this result with Eq, 108 shows the simplicity of the

tianuform, as compared with the impulse response

Our obji ot, now, is to show how the transforms can be used to deteirmine the output
of a system. Emphasis will be placed on an important bpectal case for which thE trans-

forms are factorizable. This situption arises when a nonlinear system is lumped.

We shall be in a position to apply the funutional representation to the solution of

nonlinear system problems, and several examples %,tII be given.

3. 2 MULTIDIMENSIONAL TRANSFOIRMS

Higher-order tranmfnrms were defined by Eqn. 10 and 11, and a method of using the

trarsformm wan indicated. The linear case is well known. If

f1 (t) . h(-r) x(t-,r) dr (110)

then

F a(s)- Hi(s) X(s) (111)

Consider .' -. i.$4.,ý ..ystem

f2(t) - i / h,(,r, 7.) x(t-.Fl) x(t--r,) d,,Id'r,* 12

To use transform theory here, we must artificially lIst. cduce a tI and a t2 , so that

1(2)(t 1, t2) " J81 h2(r1, T.) x~t l-'r,)x(t2"Tr2) dr I d-r

and then

F( 2 )(s 1. Z) • H f(s, sz) X(s 1 ) X(s2) (113)

Formally, at least, F( 2 )(s*1. s) could be inverted to give f(2 2(tl, t2 ), and when f2 (t) is

the desired output, f2 (t) a f(2 )(t, t). This is illustrated In Fig. 17. We have f2 (t1 , t2 ),

which could be plotted by contours on the ti, t 2 plane, but we are only interested in

f2 (tl,t 2 ) along the 45" line where t, a t? % t, This method generalizes tu isigher-order

cases, For example,

f(3 )(t 1 1 t2 1 t3 ) 1 /F h3 ('r3,r 2 ,f) x(t 1 -ri) x(t 2 -. r2 ) X( .. r,) d'rldzd-r3
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but th quanti'. of interest is f 3 (t), with
f 3(t) =- f(3) (t, t, t)(I 4

The procedure of taking a nwmb. : of variables t .  tn as equa! will be co1al1
"fssociating" the variables. The procedure that has been outline- te not particularly

Fig. 17. (tI#t 2 ) plane showing t! I tZ line.

practical, sin,:e it involves taking an n-dimensional inverse transfo:rmi. A better pro-
cedure in to associate the time variables in the transform or frequency domain. That Is,
given F(,)(61, 92) as the transform of f( 2 )(t. tI#). then F2 (s), the transform of f,(t), will

be found directly from F,(m1, e2). The formal relation iiý

F ) -" -L f F(,)fs-u, u) du (115)

where w in a suitably chosen real number. A proof is given in Appendix A. 2. This

relation to similar to the Real Multiplication Theorem of linear theory (9). For higher -

order transforms, Eq. 115 can be applied successively to associate the variables, two
at a time. Ther ".sr example, for V(•).('1t 82)0j))

S2 • J • - m l ¢ j w F (2 )(r 'u l# u 1_U 2 j U 2 ) d u ld U , (1 16 )

This is still not very pr,itical b.ciause convolutions must be made Itifthe transform
domain. The great value of making the associations in the transform domain lies in the
fact that these associations can be made by inspection in a large class of problems, This

clams is the nonlinear generalization of the liu.mar ioituation in which thje transforms are
factorisable. The constraint o'n the system is that it be lumped - that is, that all the

transforms of the linear subsystems be factorisable,

Then for the system H. where H m 1Hl + H+... +.H, + ... . *G e•ave

H I (a + R i'1(117
H Ims) i I + PI (tLO

where PV. pi. and R' are complex constants. This is familiar from linear theory, and note
that terms of the formn Pi/(s+pg)n, for a > 1, have boen left o t,. Such terms wid be con-

sidered separately. If X(s) is the transform of the input to H, then the transform of the
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output from the linear portion H, i* given by FI(s) = HI(s) X(s). If Y(s) is factorizable,
then it it known from linear theory 'hat Fi(s) na(a the same form as Lq. 117, if multiple
order poles are neRlected. In the class of syst-mi that is being Btudi,3d (linear suhays -

teme with memory and nonlinear no-memory subsystems) the moat ger~eral second-order

term is a summation of terms of the form

_ * (_B, 1a) (118)
The determination of the transform of surh a term was considered in Sertion II. !t

A l( l+sz) BI(RI) Cl(52)

where A1 (a), BI(s), CI(s) are the transforms of the systems At. l, and 91, respec.

tively. If the input hau a transform X:(s). then the contribution to the system output that
is attributable to the output from the term of Eq. 118 has a stond -order tranhform

A 1 (s+S 2 ) B1 (sl) C1 (s2 ) X(s1 ) X(02) (119)

If a,(&), CI(s), and X(s) are of tne same form as Eq. 117, then BI(sl) X(or) and

CI(s 2 ) X(s 2 ) have this form, and Eq. 119 becomes

A1 (s +a2  i _1.V I (ZO1 2) Z ai 1+V0)

where Bi, Ci, P,, and y, %re complex constants. The transform AI(a) does not have to

be faotorlaable, but it will generally be assumed to be so. Note that the terms I Rism

1.0
ha',- been .xelu.ied fr,- j•. summation of Eq. 120. This is done beuause these terms

are the transforms of impulses, doublets, and so forth, and such functions do not exist

when squared. Should these idealizations occur in a physiual problenm, they must be

removed and replaced by the real physical signals.
The inspection technique can now be developed. CuPider a typical term in this

second-order case (Eq. 120):
a 2)815) A~l~Z)-B C
claS, . z) Ail lz0,- +--- s2 +V

Application of the transform -domain association equation (Eq. I I.b) gives

G('() " Z--LJ O(zs-u, u) du1a)

or

21's) - I Af(a"÷u+u) 15 u du

x A,(5) du
SZwj os- u + A + -Y
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The 'erm that is to be considered J.q

I *.f B C du

But (B/(s1 +A)(C/(s 2 +v)) in easily inverted, and has an inverse ti.arisfor,.i

Be'A I Ce'•t ta

Setting t, = t 2 a t give.

B Ce"(O+v)t t ýk 0

This hasa transform, BC/[s+(p+y)1, and it in seen that

I f B C du = BC( P 3
i-.i a - + %I Y + (A+Y•)

Finally, we have

02(s) .Al(R) BC

q + (p+Y)

where G.(s) is the transform of g 2 (t); and g 2 (t) u X(2 )(tt), where g(,)(t,,t,) is the inverse
transform of G12)(51,42). That is, we have made the asuociation of t, and t, by a
tran.tnrm drnai- -. ipulation that gives us this nrdinary linear transform of the desired
time function g2 (t)' Furthermore, this manl-u'ation can be done by Inspection,

That it is an Inspection terchnique is seen by noting that the association of tI and t2

changes

G(?)(sl, ) * AI(sI+u2  -'B C (124)

into

GZ(i) m A1 (s) BC (1ZS), + (p+i•)

Examination of Eqs. 124 and 125 shows that the change is a very obvious one and con bv

obtained by inspection,
Higher-order transforms can be reduced by applying the inspuction proced're to

ausociate the variables. two at a time, For example, connider the third-order term

A B C C c (126)
+I + + + a a 4. + + a + Y i34 Y

Application of the formal association equation (Eq. 115) to associate and s3 yields
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I 'i '2j~ A B C C C du
f'-iITJU..f + U4u a s+ E- -u- 7+ ri + Z- + - ' u+Y

A 3 C I r / +JO C C du (127)
"a +8 +a s+ Sl7 -s+y Zirij..J.. a2" 1*Y U+Y

This integration is of the same type as that in Eq. 122, and it yiclds C/(3,+zvI (see
Eq. 123). Therefore Eq. 127 becomekr

A B C C (128)
'2 +-f 22 + sI + s2+ "

(For convenience, the procedure of associating two time variables t, and t1 in the fre-
quency domain will be called "asoociating" the frequency variables si and aJ.) The
change from Eq. 126 tu Eq. 128 Is obtained by applying the inspection technique to the
variables a2 and 53y N,)w, Fq. 126 equals

A 19)
'1 + '2 a + ~ a a + Y 2a 2 + 82 s + 2Y 1

and the association procedure can be applied to associate sa and s,. The result is

BC2  A fL T1 (130)

Sim"r"'Ir,. a transform of any order can be reduced to a first-order transform by

successivc u . " o,..1. .iipection techaiique. F'rv example, consider the fourth-ot-der
term

A B B (IC )
K 10 102+ 3+4) fil + 0 *1 + 0 '7 2 1~+7 ;'3 4 + (13

where Ki(s) is come transform function. Associating 53 and s4 by inspection yields

A B B C• 2
K(S+M +FI + s + a + 4. ft' a --II 1st3$

Next, associate sa and s2, The result is

A B C2

K'5+3 2 + U sa + 3+ '

K 1(sz+s3) + 7 +' + 2 3+

Finally, s2 and x3 can be associated, and we obtain

KI() - A I 1 ) (132)
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Notice that s3 and a4 were aesociated first, then 9 and sz, and finally su .ind sa. If we

had seeociated t3 and x4. 111 and r,., and a, and a,, we would have had to handle , form

that had not been discuhsed, At tiies, when we are using the inspection technique, it

will be necessary to asociate the variables in a definite orde,' to avoid forms that we

cannot handle with the method discussed here, In a similar manner, fifth-, si.xth-,

and higher-order transforms can be reduced to firat -order transforms.

Th,3 method for using multidimensional transforms can be summarized as follows:

(a) Introduce artificial variables ti, t2 , ... , tn, so that multidimonsioual trane-

forms can be used to specify the system output.

(b) Associate these variables t 1 , .... tn with the time variable t by means of the

inspection procedure in the transform domain. The result of this procedure is the trans-
form of the system output,

(c) Then, if It IN desired, this first-order transform can be inveried by the ordinary

linear system analysis methods to give fl(t), f2 (t), and so on, whero the output is

ft W tif fIW + f (t) +,. . .4. fnW+t)

Otherwise, the output signal can be interpreted in the frequi ncy domain, as is oftei, done

in linear system analysis.

Nontactorizable higher -order transforms - for example, situations in which delay Is

involved - can often be handled by solving the association formula (Eq. I 15) in the man -

ner given by Eqs. 121-125, that is, by working partly in the time domain and partly in

the frequency domain.

As an example, consider the transform

A- (133)
(41+,)n (sN+p,)

where a, and s, are to be associated. This is [lie multipl.-pole situation wht-kh we have

ignored previously (Eq. 120). Equation 133 is easlmy inverted and ham the tramsform

"A tn-l at B in-I e'1 2(. l t 1(0 - t) e

Associating t, and t, yields

A B tn+m-2 e-(,+A)t

and this has a transform

(n+m-2)l I

AB(n-) (m-I)l (s0++pin+m-1 (134)

which is the result of associating sa and a2 in Eq. 133.
Before giving some examples of the appliuation of the material already presented,
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we shall ruund out the discussion of syte1rj transforms by considering some other pi .11 -

erties of these higher-order tran~sforrns.

3.3 STEADY-STATE RESPONSE

In l1near system theory with f 1 = i[x], and x(t) a He (Xelot}, where X is a complex

conctant, it is well known that in the steady state, the output fl(t) is given by

fI(t) • Re{XkI-I(J)dteI}

where H1 (Jw) is the system transform Hi(s) evaluated at s m jw,

A similar result is found for the nigher-order system transforms H1.(s!, ... In).

To develop the steady-state output of a second-order systeri with a sinusoirn1 input, con-

sider the second-order operation on an input pairs

92 " 1j2 (xy) (135)

The complex functions are

x(t) a Xe jlt

and

y(t) a YO. zt

where X and Y are complex constants. The steady-state value of g2 (t) is given by

g2 (L) w XsH 2 (j. 1 , JwZ) e•1 0 . (136)

where HZ(Jwl, J. 2 ) ins H 2(sl, s) evaluated at aI • i and aI m I.. We see that the trans-

form H.(sI, s 2 ) has a steady-state interpretation vei, ,e.wilar to the linear transform

HI(s). The operation of Eq. I i does n~ut exist alone. In order to examine the real

situation, consider the actual second-order system, with f. e U2[x]. Let x a y + a, with

y(t) • jf •'t

und

2 (t) A e •j~

Here, rt is the conjugate of the complex number X. Then

x(t) - Re {Xewt}

The problem now is to find the steady-state value of f 2 (t). We have

f 2 'z ((y4-z)2) - 112(y2 ) + 2jJ2(ys) + 11'(.2 )

and, by use of Ea. 136,
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f t ie( ? (w w :i'. 2 t+r'-f,• • .... -Jo)t

Hence, the steady -state response of a quadratic system is composed of a dc term and

a double frequency term. This is similar to the effec.t of a no-memc.y squaring opera-

"tion.
In .. sinillar manner, the steady-state response of higher-order systems can be

formed, For the third-order came,

f (t) *-L Re {3 H3ijw.jw, je) eIjh'+3X2XH3(w ~ ~ Jt (137)

It should be noted that the solution of these equations depends upon H n(s L' .... a n) being

symmetric, If the operation of taking the real part is omitted, then the quantities

X 3 H 3 (jw. jw, jw), and so on, can be regarded as complec amplitudes of thc correnponding

sinusoids, just as in linear system analysis,

Not only do these results furnish an interpretation of the higher-order transforms,

they also show tniAt ýhv steady-state response of a system can be easily Mbtained, once

the system transforms are inuwn. To give an example, conolcer the nonlinear ampli-

tier of Fig. 13, We shall use the system transforms for Li(s) and L 3 (al, s2, 13) devel-

oped in section 2. 9,

Let
A 1(s) " A,.)'
A ( a s)" "

and

(8+0) 2 + "

Then

n IABs

L().•0

and

n3 A Be Bf, Bse

11 21 3 [(@ 1+0;,s$ +P)2+wl] [a +0 )2+w2] (a +P) 2+ 1 +P2+WJ2

If we apply the methods that have been given for obtaining the steady-state sinusoidal

response (in particular, Eq. 137), at frequency w, we have the following complex

quantities.

(a) Linear gain,

nlABX(jw)Z
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(b) First-harmonic distort.- ri, which in the amplitude uf the first -harmonic term

3
that vai,iebea s X3

* 3 L 0W.~ jW, -JW)

3 i 3AB3X3 1j.I)(JO) (139)
4 [(Jw+G) 2Iuw] I (.W ,J~__ý_1+o

(c) Third-harmonic distortion, which is the amplitude of the signal at three times

the input frequency,

S¼ L 3(Jw, Jw, Jw)

n A B 3 3 (14 0)

[4~~)+~ [(j3.,)2 a 2+Wz 3

where X is the amplitude of the input sinusoid,

3.4 INITIAL-VALUE AND FINAL-VALUE THEOREMS

Another useful property of the higher-order transforms Is that they obey initial-

value and final-value theorems that are similar to the linear transforms, if f(n)(t.,... t n

has a trariAurin 5,: * . * an,). and if fn(t) 0 f(rj)(tt, .I., t), then the following reia-
tiuniv are true:

lim fn(t) a lim F(n)l ' n) •I , (a41)
t-,' n (n(r''s ) I ' i

n'-

and
lim n(t)m lim F(mi. . ... aS) Mi 0'n (142)

Proofs of Eqs. 141 and 142 are given in Appendix A. 3. The usual l.near theory con-
straints hold: all limits, in both the time and frequency domains, must exist.

These results can be used, just as in linear system analysis, to obtain the initial

and final values of system output values, slopes, and so forth, rapidly

3.5 EXAMPLE 2.

This example is concerned with the feedback ser'-o iystem %f Fig. 1S. 1 l is the

•,Lscade comblaation of an armaiure-controlled de n...-ot and a gain iactor, and
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ie(s) ý A/(s+a). The output f is the motor velocity, and N ia a compensatioo duviuc.

(.6ee Fig, IS.) The objectP'e of this design is to reduce the step response time of me

system,

First, consider the linear uncompensated system with N = 1. T'ie step response of'

this system in

f(t) W X(1-0-At) t ;0 0

where X is the amplitude of the Input step, and A v a. The rise time of thu system can

be reduced by increasing the gain Moctor A, but there is an acceleration constrairmt that
limiia the size of A, This limit on A to
0 , tprmined by Xm, the maximum input

amplitude with which the system in to be
used, and by M, the maximum allowable

-• acceleration, In tact, the maximum gain

for this linear system A# is given by
At a M/Xm.

In this p:'ulem, we shall show that a

Fig. 18, Example 2, Char-ioterization simple nonlinear ne-memory compensating
of N. device, L a I + NV. can be used to decrease

the response time and still meet the accel-

eration constraint, Only the first two terms of the output are significant in this problem,
and hence f(t) a fl(t) + f 3(t), The nonlinear system in this problem in the same as that
of Fig. 15, and the first two aystem transforms have been given in Eqs, 105 and 106,
If the inpit rit) I - ma transform X/a, +hen the output transforms are

F(s) I _AX (143)
a s(siA)

and
n3AXC3

(s1 +s2 +s 3+A)(a I+A)(w,,+A)(s 3+A)

By using the inspection tenhnique, we obtain

F(a n3AX 3  (145)

3(1 (s+A)(s+3A)

and thus

fit) - (I ) -At - eL3At} (146)

Also, we have
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ý~3X2'e At z-A
f'(t) -AX { - "n-At 3 X2 -. At (147)

where f'(t) represents the acceleration. It is possible to investigt.*e various choices of

A and n 3 to obtain a rapid response and still have fmax M. A good Qhoivo is

a - 1 (148)

in which, came the gain can be trkem as

An aA M (149)

and the acceleration conatraint Ls satisfied for the maximum input amphtude, Xm. The

0 to 90 per cent rise time, tr, for maximum input signal is

t 1.8-M (150)

and for the uncompensated linea.r came, it is

Therefore, the rise time can be decreased 20 per cent by the use of simple nonilnear

compennation, For small signals, the rise time has been decreased 25 per cent.

1.00,

0.6

0. 0

•0.4

Fig. 19, Syatem response. (All outputs are normaliaed to 1,)
Large.-signal input. o, oompensated nonlinear system;
(-, uncompensated linear system, Small-signal input:
x, compersated nonlinear system; 6, unoompen. ed
linear system,

Figure 19 showm the transient responses for msxiam', input sopm and very small

input steps for tht linear uncompensated and the nonlinep... cuapenmated sm stems. In
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both !,jrves, the output is oor'malized t,, 1. Figure 18 gives the input-output char-cteor-

istic of the nonlinear device. It Is ,pocifled only for an input lens than Xm. Outside

this repion, any saturation characterimtIc suffices.

It is appropriate 1- emphasize the

,mrportance of signal amplitude in the

analysis and synthesis of nonlinear sys-

terns. In the analysle of linear systems,

the Input-signal amplitude ic rather inci-

dental. This Is not the cLse with nonlin-

- •ear systems because the nature of the

.ystemn response is greatly dependent

upon IWput amplitude. Therefore in a

10) nonlinear system problem the rangie of

Fig. 20. Example 3, (a) Lowpass am- input amplitude in a very important

lifler wiith output distortion, parameter. A knowledge of this range is
b) Amplifier A with feedback. essential in using the functional repre.

sentation for system analysis because

this will determine how many terms of the output must be retained.

The use of nonlinear compensation in servo systems is a problem of considerable

interest. This particular example has been given not only to illustrate the use of the

functional representation for nonlinear feedback systems, but also to indicate the pos -

sible use of the representation in the study of the general problem of continuous nonlinear
coinpet,•, .:•

3.6 EXAMPLE 3.

The systems of Fig. 20 are: A, an amplifle, with output distortion, and R, the same

smplifler with some weak fr ,dback Fir reducing diatortion. In this situation, the claid..

sical stendy-state methods do not suffice,

Let HI have a transform, H/s + a, and ?• - I + N3 + N5 . The transforms of aystems

A and B can both be computed by the methods prevviously explained and illustrated. If

the input in x(t) m Re {XeJt}, The transfoms can be uscd Wo give the distortion ratios
for the systems, (Transforms and details are given in Appendix B.1.) For low fre-

quencles, these ratios for systen A are:

First -harmonic distortion -- n n3 B
2 X 2 + 5- nBB4 X 4  (151)

Third-harmonic distortion 4n B2X 2 + A nB 4 X4  (12)

4 44
Fifth ..harmonic distortion I I- n 5 B4 X ( (153)

where X is the input amplitude, and B m lIX/o is the bnear low-frequency gain. Assume
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that 1 n Bz X z is approximateiq and a- nB 4 X4 is approkimateJy 2 at the maximum

value of the input amplitude, X. Then the uistortion ratios for feedback system B are

as given below. (See also App•ndix B, 1.) 0 Is the ratio

H' - H (1S4)

where the gain factor H has been increaued to HI to keep the linear gain of r*.udback

system B equal to that of system A. These ratios arc:

First-harmonic distortion, n~ B 4 4 _ 1 5 n2 B4 "4 G (155)

Third-harmonic distortion INI n B 2 X2 +. 5j n B 4X4 _ Is n 2B 4 X 4 0 (156)

Fifth-harmonic distortion N ij nI1 4X 4 " j• nIB4 X 4 o (157)

We see that feedback can be used to decrease the amount of distortion even with the lin -

ear gain kept the same. It is interesting to note that if n5 a 3n2G, then the distortion

from the fifth-order nonlinearities will be completely removed by the feedback.

This example could be exteaded to higher distortion and stronger feedback by devel-

oping more of the terms in the expansion of the feedback system.

3.7 EXAMPLE 4.

The syntem , 1'.. , ia is an example of an FM detector of the phase-locked-loop

type. The input io

I P o I A L to l- -..
050 BLLAIt

C.

S r

E1114 - I

Fig. Z, Example 4. (a) Phase-locked loop. (1., Equivalent system.

45



x(t) = X cos ('Wot + s(r) i(ý

where o Wa the frequency of the system's voltage -controlled osc.llator, X is the signal
amplitude, and a(T) is the m, odulating signal. The equation for this .lultlpliLativc
feedback system is

r(t) - -XKLI 0 Fo ( 0 t + f t s(,)dr sin (.,t + j rir) d (159)

where L, is the ideal lowpaos filter.
Expanding Eq. 159. we obtain

r(t)=-XKL [sin (Wuot0t ft jr(r)+s(,r)} d-.

+ sinj {r (-r) -@u(-7)d -r) (160)

Since .1d is lowpass, the term with frequency centered at Zw0 can be neglected, and
r n A sin {lij.(-r]}, HI is an ideal integrator and A is a gain constant, where A = XK.
A diagram of this equivalent system is shown in Fig. Zlb, in which

N[yJ m A sin y (161)

Solvitig ft- - #k- first three terms rf system L, we obtain

LI(s) A (162)

L A(m I+sZ+s 3 ) I M Ii

L3 (s01  3 I 7 T 73 77 X aA1 3 + Aa()6

L~ 1  .. 5 ( a l l A. t o 
-

Ls5l ... a) - + .. , + +A 2 i-

9s1 +A - sm +A (164)

First, the Aystem step response will be compited. If the input s(t) is a stop rtesponve
Su(t), then a good approximation to the output r(t) for S/A 2 < 0. 5 is given by

r(t) - rI(t) + r 3 (t) + r 5 (t)

Ascociated with rl, r and r5 are the nmultiple-order transforms:
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(3)' 2' L23(',3 2' 3) s2 W3

R () , * ... 'a) - L (, ... s181)5 .- .

Converting theme to the first-curder transforms H-e(a.), R3 (s), and h(s1, and inverting

(sea Appendix B. 2 fo)r details) gives:

2 S4'-Atr (t) US f{ 1 (i S +4f 65 -At

+ 6 .+ A (t3At

For small S/A, the system is linear with a response, r(t) u S (I-e.At), and it departs

sign,'cnr1ly from this linear operation as - 2/A 2 approaches 0. 5, It should also be

noted that ;I S "- A, ,,on the system becomen unstab•e because the form of K (see Eq. 161)

restrirts the output r to be iess than A, and -tatic balance is no longer possible.
The sy•stem steady-state distortion with sinumidal input can be readily obtained by

the appropriate substitution of jw in the system tL,•,s.orme (Eqs. 162, 163, an,4 164).

3.8 SUMMARY

The basiu material for the analysis of ý.ontinuoua nonlinear systems with determin.

istic inputs has now been presented. An algebru of systems has been ,-ud to describe

a system in terms Df its oomponent subsystems, From this description the system

transforma can be found, These transforms can then be used to determine the system's

response to various inputs.
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IV. REMARK ON APPLTCA'rT(:NS OF THE ALGEBRA OF SYSTEMS

AND SYSTEM TRANSFORMS

We shall be concerned here with several topics that are entensione of the r.,-aterjaJ

presented in Sections I-III. The first r-opic confCu wuo the use of the algebra of systems

for bloc' k-diagram manipulations.

4.1 BLOCK-DiAGRAM MANIPULAiTIONS

An example will be given to illustrate how this algebra can be used to perform block-

diagram manipulations. It will be shown how .c..th manipulations can be performed alge.

braically, rather than through a sequence of diagrams.

fb

Fig. 22. Block-dirrsem manipulation: (a) feedback system; (b) first
equivalent system; (a) second equivalent system.

Consider the feedback system of Fig. 22a, in which U w Il + H1. ;h1 is the linear

part of the system .H, and If-, As the o..nlinear part. The object of this example Is to

show how the linear part of a feedback system can be isolated, We have L a I + H * L *

1.+ (_H+ft ) * L, and then L 1 1+ 9l * L, + HT * L, or, if we take L!, * over to the left-

hand side, we have

(-HiI) * L •I_+ HTf * L (165)

Then

(1-bl)' * (j-11l) * • (j-.lfl'l a (L+t7a*) (166)

or
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L -(L-H +1  i (iH*L' ( 7

Equation 167 is the system equation for the system of Fig. 22b, with tOe inrear part of

the system concentrated in the forward loop. Note that the lineor part n.* L is given as

_L, ., (I-L-alI~

Now, ifK a_ * L, then L - *Li, and from Eq. 165,

K -I+ (!!-f *!l) * K (168)

Thus, another equivalent configuration is obtained as shown in Fig. 22c. A third equiv-

alent configuration could also he obtained with L in itont of the nonlhicar feedba-'k

system.

There are several reasons why such changes in a feedback system may be desired.

For example, it might oe more desirable to construct the system in one configuration

than in another. Or. some particular configuration could be the basis for an alternative

system expanslon. For example, Zames (10) has developed the concept of expanding a
feedback system in a series about the linear part.

4.2 COMPVEX TRANSLATION

The complex translation theorem of the theory of linear analysis (9) can be stated

as fuilJWL

If f(t) hac 4 wrausform F(s), then has'(L) ine a transform F(s+a).

He•'•. a is a complex numLer. A similar theorem holds fnr higher-order transforms:
if fn(tl..... tn) has an n-dinensional trat,,fot kt '10 n )e.. .s-), thn n)

f(t ... n) has a transform Fn(MI+aP .... sn+.Ann

The al, az, ... , an are conil. :x nimber3, and the proof is essentially thn same as the
prcvi for the linear case.

This translation can be useful in finning the envelope response of a system. For a

linear system H1 , with transform Hi(s). let the input be the real part z,i' x(t). where

x(t) - e(t) exp(jw t), and e(t) is real. If the complex output, '(t). is in the form

f(t) = o(t) e (169)

where o(t) is ýhe complex envelope, then

O(s) -H H(s+Jwl) E(s) (170)

as can be shown by the translation theorem. Then o(t) is the envelope of the output

sinusoid.

7o Illustrate the use of the translation theorem fur obtaining the envelope of the

output from a higher-order system, consider the third-, Jr,, system H3 1 #ith the input
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z(t) - He {O'dWO+01

where x(t) is real. By exp;.ring

(fX~t) eJ~t+* x(t) _ )3)

"as we c;.,j for the steady-state situation, and applying the translation theorem, it can be
shown that the complex envelope of the third -harmonic output hap a third -order trans -

?orm:

iX(sI) IX(s2) X($3) H3(e1+jw.s 2+Juse+jw) (I7I'

when X(s) is the transform of x(t). The thirf4 -orcer transform of the enevlope of the
first .order harmonic is

4 X(m1 ) X(s2 ) X(o3) H3 (s1+w H s2+jw'-e) (17?)

and the associated first -oeder transforms can .hen be found by the methods of Section I11.
This procedurn for finding envelope responses generaltzes, Jri a straightforward manner,

to systems of any order.
As an example of the calculation of envelope L 13ponees of nonlinear systems, con

aider the feed-through example of section 2. 6. •or this system, L1 (m) and L3 (sI'SZOS3 )
were developed in section 3.3.

Assume that a is sufficiently small that the third-harmonic output from the system
is neqllpible, and lot the input x(t) be

:.(t) - u V)• ot t ;ý 0

0O t'e0

Then the output con be shown to be

f(t) - (O1(t)+o3 (t)) cog .iot t P 0

The transform of ol(t) is 0e(*). and a third.order transform, 03(o1, 02, 43), and a first-
order transform, 03(m), are associated with o3 't). Thum

Oi(s) a Ll(s+jw) K n 1ABX
S(s+s)(s+iP)

and
IC X

03(ols 2 ' s a 3) L3(SN+JW' s 2+J" s83-J) sT NA sX

3 n3 AB3 X1

4 (s1+sz+s 3+G)(s 1 +P)(s 2e+P)( 3+P)

so



It is ass ured that a and p art? much l'sr, jiat, wo, and poleo far away from the originhave been neglected, By use of the linpection methods of Section 111, 03(s) is obtained
from O(3)(staI, 2 ), and

n i 3 Kd X 3

0o3(a 3- (n+a)(s+3p)

Inverting St(s) and 03(s) yields

o1 (t) n..Hx (C-at .e"•) for t P 0

U-.--

tid

0 3 (t) _n3KHIX 3 (eUt -'3t) for t ; 0
(30-a)

where (ot(t)+o3 (0t)) is tho envelope of the output sinustld.

4.3 A FINAL.VA',UZ THEORfEM

A variation of the final-value theorem (see seo, 3.4) will now be Alven.
It y(tI .... ,tn) has a transform Y(sIP . a. n then

ILI• -I .t.) . l'ra nI , ,,in41o
tl.. "0 , CM,

It is also true that

lim Y(t ... tn) l lim Y(6 1 . n)s
ti-', 

Nt,0 .. I)

and so on, for any number of variables. This in proved in Appendix A. 3. The condl.tions for validity are similar to those for the final-value theorem of lineur thsory. Thistheorem will be applied in Section V, but there im one use or it that will be mentioned
now.

Consider the system of Fig. 16, For, the second -order system, L 2 discussed in
section 3. 1, we have

L 82| I) ,' A"B

'a Flv +ez+)AX +0)(a 2+a)

1,et the input be x(t) L y(t) + s(t), when z(t) is a unit ,tap that stxrt. at t -*P andy(t) is some input that ntinits at t 0 ,. Then the output 2(0' is given by



f Lz(y2 ) + -Lz(yzl + l.z(zl') (173)

Since the system has reached steady state before y(t) in put In, Eq. 173 shows that the

system, as far as the input y(t) is concerned, is of the form

fz 2 -12(y ) + -HL(Y) + No

where go is a zero-ordet' system - that is, a constant - and H. x &2- Heilue

A2 BH2 (el, s2
Cu 1 +s2+p)(s 1+i)(s2+s)

Now, 2-L2 (yz) I i(y), and by applying the limit theorem, we find Ihat

H (W) lir 2LZ. 2(,.p)R
p-.0 p

*2A2S I I"a NO+) (s+G)

The final-value theorem also gives ho, the constant associated with the system H., and

a r 2 (s A8 2

,2-"

Thin pnh' . introduces two comn.opt: (a) the idea of describing a system about a

de input, and (b) the use of this modification of the fir .- value theorem to find the trans-

forms of the new system. In general, a syRtem of any order can be considered in this

fashion.

4.4 DELAY T'HEOREM

The delay theorem states that if the system T is a pure delay (or advance), with

y(t-T) - T[y(t)], then, for any nonlinear system H., 1: * H w H * T_.
This follows from the physical reason that it doce not matter if a time delay precede,

or follows a system operation of any kind, The particular case

IT *-Hn "x!n *T

can be derived from transform theory because

"I MIT-. .. -a nT Hn(1 . nd( 4SSn~e .... an)(174)

is the transform of T * H n and
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H n 81, n ) -a I T-. .. ,-sn T(15

is the transform of Un * T. Obviously, Eqs. 174 and 175 are equal,

4. 5 DIFF., rEbTTIATION THEOREM

If D is a differentiating bystem with

_jy(t), • d y~t)

then

H nw nHn o (D2.f) (176)

where .i is the identity system,

We shall prove th•l by using transform theory. The transform of 1 is s, and the

transform of . is I, and hence from Eqs, 90 and 95, the transform of nU n o (Qfl) is

nHn(si .... 8Nn) st (177)

Applying the symmetrization procedure of section 2, 9 gives Eq. 177 in symmetrical

form-

Hn( (fil asn )(8+...s d+n)

The tranwfuL.,0 vi'2 • -T :

(v I+'" +on) H n(s 1 ..... an)

by application of Eq. 92. Since

Hn(Sl ..... Pn)(Sl+,.,+Sn' ( Ie++ 5 n ) Hn(ni .... #n)

it follows that Eq. 176 Is true.

4,6 LIMIT CYCLES

A feedback system (see rig. 23) for which the total system operation around the

loop is L, with L • P. Ic In force-free (no driving input) bvkanc:., in the steady Ftv+.e,

when

j[x] . x (178)

in the steady state. The particular functions x(t) th&At satisfy Eq. 178 ar'e called "limit

cycles," It is seen that x(t) a 0 satisfies Eq. 178 (L is assumet! to have no zero .Jrder

part). Therefore all systems have at least one limit cyne. If Eq. 178 has one or mure

nunero solutionti, then Lhe system output, under approp Atý initial excLtt.'ion conditions,
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will tend toward some one of these solutions in the

steady state, A system is, then, unstable if rnonzeto
lir-it cycles uxist.

Some of the cycles theroselv.s mny be urnstabl" -

that is, the output will tend away from theise unstable
Fig. 23, Feedback system, limit cycles, rather than toward them. If x(t) m 0 is

an unstable limit (ryoJe, then the systcm is small-

signal unstable. That is, any small signal will causc' a system exo-itation that will not

die down.

Returning to the balanrne equation (Eq. 178), we let L H J•, where I] is a linear
lowpass system, and K is a nonlinear systeri. In this came, the balance equation in the

steady statc can be solved by assuming that

x(t) - X cos Wt (179)

Note that it does not matter if cascade components that make up L form a cyclic permuta-

tion, For examp~e, A * B IN C, _ * C * A. and g * A f* B are equivalent forms of .L, am
far as Eq. 178 is concerned. All we are doing is writing the balance condition at a

different point in the loop, The particular form used is determined by finding out which

form gives the easliet answer.

Following the solution of the balance equation, we have

K[x(t)] a K(X.,) coo wt + higher harmonics

where K(X, w) is a function of the amplitude X and frequency w. Because of the lowpass

ch~ro- 'Pe, of HA, the solution

H (IW) K(X,W) I

for X and w is a closely approximate solfflon of the balance equation, This is

the "describing function method" (8), and the .Llue(s) of X and W, so fould, 4ive

Eq 179 as the limit oyclets), A limit cycle is stable if changing the amplitude X to

X + AX gives

HI(Jw) K(X+AX, W) < I for X + AX > X

and

H (jw) K(X+AX, w) > I for X + AX < X

Otherwise, the limit cycle is unstable,

For any system in which the loop operation L. can be described by the functionot

series, or polynomial, the transforms Hn (Jwl ... ItWh) can be usec to solve the balance

equation (Eq. 178) In the steady state, at least if the number of ha' - mnice involved is
not too large. It cran be assumed that

zX(t) : XleIt )t + Xej•Wt + X2 ejhst + 3 j2Pt J2 ,,.
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and the values of X,, X2 , etc., and of u: that satisfy Eq. 178 can be found. The xlt) so

found are limit cycles and their stability can be investigated, as in the previous specinl

case, by finding the effect of a small amplitude change.

4.7 MEASUREMENT OF NONLINEAR SYSTEMS

Our final topic here is the measurement of nonlinear systems. rwo techninues will

be mentioned - time domain and frequenoy-domain measurements. T'he dis:udsion of

the measurement topic will be completed,
in Section V, by describing a measure-

9 11 ment procedure based on a white Gaussian-

noise input. The discussion here whowe

only that measurements are theoretically

pnossible, Thus far, no nuch measure-

ments have been made.

Unlike the input-signal amplitude in

linear systems, the amplitude of the input

signal of a nonlinear system is of great

"importance. Both the analysis and meas -

urement of a nonlinear system are depend.

ent on the amplitude range of the input

signals for which the system is to be used,
----. -- '-.. .For this reason, the input test signals

nhould be bounded signals, and, further -

more, the amplitude of these signals need
Fig. 24. Measurements: (a) determina- cover only the range that is of Interest

tion of coefficients; (b) linear
coefficient m,(t), For the reasons mentioned, we shall

adopt the step function for the input test

signal for time-domain measurements. Consider a nonlinear system L, with J, Ll +

1"2 + " + 11n + .... and f w L[x]. The output f(t) for an input step function, x(t) • Xu(t),
is

f(t) - x t I (T) d-r+ ... + Xn It ........ ...-r

For a perticular value of time, tI,

f(t 1) 1 XmI(t 1 ) + x2m2 (t1 ) + ... + nm,(t,) + ... (180)

where

mn(t ) .I ... ln( 1 ..... I n) dTI . .. d5



Equanton 180 is a Taylor sorite.4 in X•. .id the output f(t,) is dependent upon X, -'s ;,nown

in Fig. 24a. If f(t 1 ) is founa experimentally as a function of X, then it Is thteoretically

possible to isolate the coefficients mrn(tl) in the Taylor's series. If thege coefficients

are obtained at a set of ti.aes t I.... , tn, then they can bc plottý.u, as is shown ii

FIg. 24b for m,(t), to determine m n(t.

The impulse response of 1,, can be shown to be the derivative of me(t), and so

I I(t) a Aml)
dt

rherefore, the impulse response 1l(t) can be theoretically determined.

Now, the Impulse response of L 2 can be found. To do thir, we take as input x(t)

y(t) + z(t), where y(t) - Xu(t), z(t) m Xu(t+T), and T is some positive number. The out-

put, then, is

f(t) • XPI(t) + X pZ(t) + ... + Xnpn(t) + . ,. (ll)

where

P n (t) -1 .. . loIn ( Ti1 . .... Irn ) X (t- -¢ 1) .. . x (t- ,rn ) d -rI . r .. n

Again, the pn (t) can be determined by the use of Taylor's series, as the mra(t) were.

The term Xpl(t) is not needed and can be ignored. From p 2 (t) the impulse response

12 (t1 , ty) can be found in the following way.

p =, - l;!'. .... 2)z

• &jg(yZ+2xy+ Z)

.J tf t 1,( -r, % , d -rid -2  + 2 1 ( ri 're) di dr2
0. fo a If 21

+ • f 12('r1 , TZ) d~ld rZ+2L(lT)dlT
0 00

t T f t+T. 2ft vt+ .d''d£

m 2 (t) + f ft+T (Tl, TZ) drdr2 , + m2 (t+T)

But, m2 (t) is known, and so the term

jttT t+T
g2(tt+T) aJ10 0 2(1 r2 .r) dd.) (I)

can be isolated, Repeating this measurement for a iývniber of values of T will puduce

the two-variable function g2 (t1 , t2 ). Then it can be sh, i-n that
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1 2(t , t2) at- 9,(tII t2)

and now I 2 (t 1, tz) can be theoretically ' -terminod from g.,(t , tZ).

In a similar manner, 1 (t, t a, t 3 ) can be found by using an input tripiet of step fuzc -

tions, that is

.%'t) = Xu(t) + Xu(t+T 1 ) + Xu(t+T,)

Theoretically, the procedure can be continued to find the I (t, .... t) to av'y order n

that It desired.

The frequency .domain measurements are similar to the time-domain measurements,

in their use of Taylor's teries to isolate the r'torius terms. We have

f(t) --* 1 x(t)] + 13JZx(t)] + ,. + Ulnx(t)I + .. . (183)

where B, has a transform H (JI'), kH2 has a transform H.2 (J), and to on. Let the input

x(t) be a sinusoid, and then

x(t) - x Re {e))t}

where X is a real number. Direct application of the steadl-utate methods of section 3.3

gives an output that is the real part of
f(t) w XHI(jw) eJ*t + 12 X'HZ(J,, -J,)

+ Ix 2 H (j,,, jO) SJUA~

+ X3H 3(Jw, jw, i,") *J3w

+-•X 4 HI1(jw, jw, -Jws -jw) + ... (184)

Steady-state harmonic measurements oun be taken to determine the coefficients of
'inwt which are

.Lx2-Ex HZ(j. -jw) + I X4H,(Jw,. jw, -jt. -Jw) +

for n a 0, and

XH 1 (,I) +j x3 H 3 (jw, , -jw) +

for n x 1, and so on. With measurcments for various frequencies and values of X,

the Taylor-series appr')ach nan be uied to isolate Hl(jw), I1E(jw,jw), H .(Jw,-• an( so
forth. In a manner quite similar to the previous use of multiple.-step inputs, input
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sinusoids icf the form

jW~t JW?t
X e + X C .

are used to obtain H2 (3w, Jw), In general, multiple sinusoidal inputs can be ubod to
determwe the Hn(Jw1 .. ).

Two methods have been desuribed for the determination of the impulse rouponfes or
transforms that characterize a nonlinear system, In Section V, anothar me" od, based
on a random input, will be diacuoasid.

Note that the measurement of impulse responses and transforvu is considerably
more complicated than such meauurementm for linear systems. This is to be expected,
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V. HiAItDOM INPUTS

5. 1 INTRODUCTION

In Sections I.IV we have been voncerned with -the functional representation of -'on-
tinuouc n,)nlinear systems, and with the tise of this representation in conjunction with

deterministic inputs, We shall now consider random inputs. Outpiut averages. -nd cor -
relation functions will be computed ..y means of the functional representation. Gaussian

inputs will receive the principal emphasis, and certain optimum operationr on Gaussian

and Gaussian -derived signals will be developed. A system -measurement technique based

on a white noise input will be dicousied.

5.2 OUTPUT AVERAGES

Let us consider f" a 4[x], where H m H1 + Hz + ... + H + .... A typical term is

fn(t) HnIx(t)]

f .. If h(1...... ) X(t-'I)...x(t-?) d.i*..d-r (185)

and

f(t) - fi(t) + ... + in(t) + . (186)

Now, &ak.'t mveraes on both side of Eq. 186, we have

tt) -f ) + .. + + .,.

and the object Is to find ft)by computing the Fn.1) (Here, we consider all random mig-

nals to be ergodtc, Therefore. averafres can be taken as time aversages or ensf.mble

averages. The average of a vignal s(t) will be denoted s(t).) This fn(t) is given by

n • .. hjn .... n) n-T,) x(t-rn)d- 1  ... dwn (187)

Interchanging orders of integration and averag.hng in Eq. 187 gives

f- " r . hn(-r, . ... n) x(t-r,1 ... x(t-'r ) dy1  ... d (n 1O W

If the correlation function x(td) . X(tn) it known, fn(t) can be f~und by performing the

integrations of Eq. 188.

It is convenient to introduce a short notation that is related to the operator n'tation
used previously. In this notation Eq. 188 becomes

fnl 1 1(xlx' n
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and the average of the output f hi

fn * (Z -i*, -Xn)
n

The subscripts 1, 2, ,,., n refer to the iubscripts nf T, '* *... I in E~q. 188,
Similarly, for the calculation of output correlation functions, we have

fit) r(t+T) - {it(t)+., +fn(t)+. 0 f{l(t+T)+..,. +fn(t+T)+,.

m fn (t) '.(t+T) (189)
m nm

and

ifm(t) fn(t÷T)" h.. hm (l .... a m) x(k-,l d... X(t- m)

d-ri ... d-rm f . .I hn(-rl, ... T.) x(t.T--r,)

... X(t+T-Tn) dt, ... d'rn (190)

After rearrangement and interchange of the order of averaging and integrating Eq. 190
becomes

fm( 'n ... (- . ,,. . , TM) h,(Tr,+ V ... ,,T+rm+n)

x(t--dl) ... x(t-rr+n' d-% .. . d'm+n (191)

Tht "impulse resporse" In 'his exprssion is that of the system .m , (LP*'Hn), where P
is an ideal predictor with time shift T, and has an impulse response 8(t+T). We abbre-
viate this as Hm . BT, and then Eq. 189, in the short notation, oocomes

f(t) (fm_+T - M.HT)(l (mg)

As in the previous came, the output autocorrelat.on funntion ca•. be computed if the
higher-order input correlation functions are known.

5.3 GAUSSIAN INPUTS

In the important situation in which the input signal is Gaucsianly distributed, the
calculation of the output averuges is not too difficult. Emphasis wL'.. ;e plaued on such
inputs, First, the sp.cisl case of white Gausuiwi inputs will be considereO and then
this will be generalized. Wiener (5) hau rigorously considered tL1o white Gaussiar.-input
casoe,
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If x(t) is white Gaussian w.-, a Vnwor density of I watt per cycle, then

x(t) 0

x(ti) x(t 2 ) 6(t 2 -t 1 )

x(t 1 ) x(t0) x(t 3 ) 0

xtl) x(t 2 ) x(t 3 ) x(t 4 ) 6(t,-It) 6(t 4 -t 3 ) + 6(t 3t 1 ) 6(t 4 -t 2 ) + 6(t 4-td) 6(t 3 -t 2 )

and so on, where 6(t) is the unit impulse function. Li general, the average in zero it the

number of x's is odd, and is a sum of products of impulsa responses if the number is

even. In general,

01t) ... X%)n .,V. rl (ti-t 1 (193)

The produot is over some set of pairs of numbers taken from the numbers 1, 2,,, n,

such as (1, 3), (2, 4). (5, 7), and so forth. The sum is over all ab.ch sets.

In the nth.order case, there are N - (n-1)(n-3) ,.. 1 terms in the summation, and

so for n even

f Unj=nX " X) . . n •' 2. . .•) 6(-r'i'•j) dri ... dTn

Nf'"f hn(-r ,,IZ....ITn/ 2 .1r, 2 ) UirIdr2 ... dr n/ 2  (194)

where hn(t 1 . ... , tn) is symmetrical. (Note that be.niise of this symmetry, the various

terms in the sum of Eq. 193 or"tribute Identloally in Eq. 194.) Hence, f(t) can be delar-

mined by performing the integration of Eq. 194 for each of the Q(t) in the sum

In

A typioal term in the correlation function equation (Eq. 192) is

(H .HT)(x. x (196)-BM.-n/ ,'M+n)

where (Uim.HjT) has an impulse respons,

hm(ti ..... tm) hn(T+tm+i....T+tM~n) (19,)

and this Impulse responre is not symmetrical. There. c it is noicessary to take into
asount the varirum terms of Eq. 193. For example,
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{6('-,-Tr)6(,r4 -Tr 3 )+6(T3- 1"-)6(T 4 -?Z)+86(T 4 -T )(T 3 - jr)} d•ld r d id.,

fh 2r. 1 hzi)dT 1d-r2 +2 J7h2(TIT 2 )ha(T+1I.,T+-,) dtr~dT2

In a similar manner, we obtain

(L x .j 2x 4 ) -ffh (-rI) h 3 (T+TZ*,T+-r3 '+-r 4 )

)&(Tr,-'r)+6( 4 mrlr)6(?- 2 )} d1rdT-d-r3d¶ 4

ffh,(r)h 3 (T+r,r,o) drdr (199)

Generally, when we nre faced with an unsymmetrical situation It is a straightforward

matter to determine the various terms of expression 197, The general term that arises

is

P... r h,(-I ..... TpOal, a, .. e'q, rq)

X hn(T+rl .... , T+*Tp,-q*q+laq+li,... I'rD%)d1 . .. dr do 1 . -. dw r (za0)

Here, p + Zq In m, and p + Zr - Zq a n, It should he remembered that exprt.;sion 197

equals zero if m + n is odd. ')nee thi. terms . .1) (x ... Xm+n) have been determined,

f(t) f(t+T) is given by Eq. 192,

The results for white Gaessian inputs can be used to obtain output averages and cor-

relation functions for non-white Gaussian inputs Jito a system 11. In the non-white case,

the Gaussian signal can be formed from a white Gaussian signal by means of a linear

shaping filter, IS. This is illustrated in Fig. 25. Then, rather than work with a non-

white Gaussian input to a system 11, we work with a white Gaussian input to a system

H * jK, Also, it the input to a system U is non-Gausslan, but formed from a white
Gaussian signal by a known nonlinear operation IS (which can be expanded in the func-

tional representation), then we can work with a white Gaumsian signal to a system H * K.

WMIT LIN""A" NON.-WHIT t
0AU14,AN - MHAPINO QAUSSIAN Fig. 25. Illustratitig the use of shapmi filter.

SINA. PLTIN5, IGNAL
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5.4 ULE OF TRANSFORMS

The averages given, for example, by Eqs. 194 and i1e could he found by perforrninin
the Indicated integ•ations of the usually awkward impulse responses. However, this
difficulty can be overcome by the :me nf transformai. The transforms considered here
will alws.ys be Fourier traneforms (see Appendix A. 1) and s t jw.

To develop th. luse of transforms, three typical situations will be explainse.. First,
consider the terra

Hn S ,. h .n... TV *' , T1,- 2)d ... . n/z (201)

from Eq. 194. The transform of h 114,6 .... t n) Is HnisI ..... an ), and heoice the trans-
form of hn(t, '' I, f .1 , tn) can be obtained by hi-spection if Hn (.... n) is factorizable,

fAt the transform of hn(tIt#ti 3I ..I , t3- n) be

KXnl(s, MI .... on)

Now, the first integration of Lq. 201 can be performed. This integrattin is

anhd n (ia , be , T3 .i.d frn) dK"(

and it can be obtained from Knl(nibl..., al) by the method uf section 4.4. That is, the
transtor,..

lrm K n1(s8 s3,
S1 - i 1'

Let this expression equal Lr. M(s3 .... I n), which is the transform of

f hn(WrI, TV, T3..... ITn ) dT I

The operation can be repeated on Ln-2(83, .... en) to perform the secound integration of
Eq. 201, and so on until it has been evaluated.

As an example, considet

ff1 4 ( 4 V.l TI. i2L T2 ) drIdy 2  (202)

whe:'e 14 (tI, t2 , t3 , t4 ) has a transform

A I I I I( 01+ + a 3 + as4+ a 81 + P a3 + 0 a + A 4+ (a03+

'The first assoeiation gives
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A I I !
1j + s 3 + a + a W'7"7" " iorw +-P

and taking the limit a 1 0 gives

A 1 1 1

;3 *4 a+ '0' a Ti + 77"

Associating the other two varial.-es, we obtain

I A 1 (204)
2A a + a+ 2Z3

and

J I(TIPTIP "' 2 ) d'rdT2 '-0 +i.. A I + A (205)
f~ ~ ~ + ýOZ a 6 T Z112

The second situation to be studied Is

J...f hn(,I-..... n) kn(T+T.I ... d-rn (206)

An we have done before with transforms, we introduce T 1, ... , T n into this term

and consider

f ... h n(r .... .n) kn I+ Tl ,t T1.. Tn+ ) d-l ... d rn

Taking the higher-order tranwform of this e•x,.-rsion yields

Hn( . . .. . -'n) K nl(2 ..... n ) (20')

The actual transform of Eq. 206 can now' be obtair.,d from Eq. 207 by associating

"TII .... Tn with T by means of thr inspection technique if the tratisfuiris are factor-

izable.

In using the inspection technique it should be noted that the contribution of terms of

the form

L n+ 1i(61I .. . n ' si+sj ) PNed Q (-s ) (2j

Uj zero when T. and T are assooic~ted. This "a bu beuaude the Ti 4Ahd T in the inversc

transform of Eq. 205 are in disjoint regions; that is, Ti > n and Tj < 0. lIir'ce there is

no contribution for t = Ti - T .
In order to illustrate the methodi, consider th 3sae in -&hich
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Ifz(s,) H (-sI'-S2) --
( -2"• •~ +s 0+ )(.- l +12+ )(-Ft 24 a) (a I QX • ) +a)

I K2W +,• -L4.
4a2 (.S09 a ) .++P) a'a + a

4= (-s1 -s2+3)(e 1 +a2 +P) jJ ,• 4 0 -5I + U ., +

4a'z (-a 1-87'ýM)s +8 +P) f(-s I+ a)(-Bs2 +a) (ia(.a

+ + (209)

Associating the variables by inspection yields

KZ I + j (210)
4ay(-s+f)s+) L + 24 J

and the terms involving ((s 1 +a)(-s 2 +a)] 1 , and [(-Sl+a)(s 2+a)j 1 give no contribl'tion.
Equatton 210 in then the transform of ffh 2 (r,, T2) hZ(T+I'r, T+'r 2 ) d IdT., where
h2 (tI, tY has the transform Hz(uI, sz),

A third situation that arises in

: -f. h n(TI ... .T. ') k m ('rl.OT ..... ,Tn +T, lW .... 1 psTp ) d'rI ... dr"n drI ... do*'p

where m + n I., even, p a (m-n)/2, and n• -, n. First, consider

J"... I k n(t II ..... t n, CIO,01 ..... W p.0 p ) tr ... do'p (211)

where km(tit .... tm) has a trtl.&sfvrm Km(all .... snm). By direct ap~lication of the

first method discussed in this section, the transform of Eq. Z I can be obtained. Once
this has been done. the situation Is the samt as in the second case and the method
involved there can be used. In a similar manner, the general form of ,r!Lq. 200 can be

handled.

For example, consider

Jfh,(-r) h 3 (1+-r, r, C) d-rdo" (212)

where h3 (t 1, t?, tj) has a transform

K 
I 

h 1/(s 
10

an~d h I(t) has a• tra~nsform H/(s+a).
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Consider

f h3(t, r, 0 do(214)

Associating o and m3 in Eq. 213 yie'do

K I I
+ 2, " 31+ P N

Let s2 0, in order to evaluate thu integral oi Eq, 214, and we have

@I +a w4  •x 0 
(216)

which is the transform of Eq. 214;. Equation 21z has a transfor.m
KH I

Inverting this transform gived

2(-i {2ae k(a4 0) e' I for t > 0

and
I alt1. for t < 0

for Eq, 2f. P.
The three main methods for handling tho expressions that arise in computing outputaverages or co.'relation functions have uovu presented. These are transform orfrequency.domain methods, In computing autoca-.,lation functions the results cao b.left in the frequency dornai,, Ir. whiubi they represent the spectra.

5.5 EXAMPLE 5.

The system for this example is shown In Fig. 26, It in an apparatus for measuringthe average square of the Gaussian signal, y(t). The aignal y(t) is formed from a whiteGaussian x(t) by means of the shaping filter -,, with Afaq) . A/(s•.e), The aystom
_41 is a physical approximation to an ideal integrator, and 13,(m) BE/(s+p). The

over .al system operatitg on x(t) ii n...
D, *N 2 * AI' where .Nl in a no-mernory
squarer, and n2 a 1.

1ý Irst, we m1ia1l obtain the , verageFli, ?6. Apparatus for meacuring avjr. square of yft). This Is the average ofage square of the signal y(t). the out; it mf the mystem U2 N,
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operating on x(t). The output .. :m H2 is y2 (t). Then

y (t) - _Hz i

" J h2(rX, 12) 6(T2 .1) drldr,

S/h2(;, r) di

and h2 (t16 t2 ) has a transform,

H 2(s 1 2) a Az

(aI +a)(# 2 0a)

Ausocleting tI and tZ Livem A'/(s+Za), from Eq. 203, and so

y 2 (t) 1--) lim A 2 . . 2
$lox +E4r#I-

Next, we #hall obtain the average output from the system L 2. where

LZ(s.l anZ ) = A) 2  (217)

Aesonlating thr. vml-' -. -eO gives

AzB
(N+P)(÷+za)

from Eq. 204, Then

f(t-' • rn AZB A2 Bs--b0 (an+0)(e+2a) i; r

and t(t) .y (t) when B * 0, We bee that the apparatus does measure the average of y2 (t).
However, the output f(t) is not a constant, but a randoin variable.

To ronolude this example, we obtain the output spectrum Of(w). The output autocor.
relation is given by application of Eq. 1991

Of(T) = •2• 10 ')2(TZ, 1'2) d-rl drz;

+ f! 12(TI, Y" 12 (T+T1, T+Y') drldv2  (218)

wbere 12(t1 , t,) Is the .Ampulse response of the system . he. first term o: Eq. 218 can
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be shown (see Appendix B 1) to equal (A'/2a) , when B • I5, Also, from Eq, 2-.',

2L 2(-s 1 ,-8 2 ) L 2(au 2) -A 
(41B)

(-a a'S+A)(a +1 + Az)(-@ l )-a )( (s+a)

and ajplication of the inspection method (Bee Appendix B. 3) given

2A 4 B 2  I

w +Pw + 4d

when jw a o. Therefore, the spectrum *f(w) is given by

*f) ( (W)+ (2o0)
Wf''0 wr 44a

5.6 EXAMPLE 6.

This example is conourned with the feedback system of section 3. 5. The problem is

much the same, except that here the input is a random signal, Gaussianly distributed.

Our object is to use the nonlinear compensating device N to decrease the servo following

error and still meet a constraint on the maximum allowable rms acceleration.
The system input is x(t), the output is f(t), and the following error is e(t) a x(t) - f(t).

The acceleration of the motor is a(t) - d/dt f(t).

Firit, we 1': . consider the linear, urtonmpensated system with N 1.. The input

spectrum is
B2

( •W 2 + 02(221)

The pertinent results (see Appendix B. 4) are:

-i 
2

e a B (222)

,2 AB2  (223)

a

e2
f

where A > IOP, in order that the following error be small. If M is the maximum allow-

able rms acceleration, then minimum following e,-.-or is obtained for A v 2M 2/B .

The rerults for the compensated nonlinear ove .ai .-'lth N a I + 13 (Nee Appendix P.4)
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will also be stated:

- B2  B4  I 6

e A
a 2 AB2  3 B4  21 n2B 6

and

SB171 3 B4  3 2B 6

T + j, n 3 Af + 3A

where n 3 is .hen sufficiently smmll that only the first three terms are oigrifleant, Now,
for example, we shall take the numerical values: B2  1 1/2, • * 2/30, and M2 , 5/32.

Then for the linear case, the largest allowable A a 90/32 and e 2 /f • 0. 05.

Fur the nonlinear compensated case, with n 3 •--, the allowable A is I, and
e /f - 0. 021, This represents a 60 per cent decrease in the following error.

This example shows what can be done by applying the functional representation to

nonlinear systems with random Gaussian inputs. It also illustrates the possible use of
nonlinear elements for servo compensation when the input is a random signal.

5,7 OPTIMUM SYSTEMS

T .T• ,. fin", Arale with the proLlem of obtaining the realisable system that best

approximatee 2 ýesired unrealizable nua,',iear system or operation. The defired sye-
tem is unrealizable because Its impulse response "starts before t n 0." Best Is to be

taken in the least-mean.square sense; that is, tWe average squared error between the
output of the realisable system and the output of the Lflvrealizable system is mini um.
The signals upon whioh the sys,oma operate are Gaussian. Barrett (6) has developed

an approach for the general (non-Gaussian) signal, but there are problems still to be
solved before we can take advantage of his approach. In this report we are restricted
to Gaussian silnals or signals derived from Gausxiian signals.

We shall consider an unrealisable linear system Li with P. white Gaussian input, and

we shall find the optimum realizable system. Let the Impulse response hi(t) be nonzero
for t < 0. Then

tilt) 0 hi(T) x(t-T) dr

or, if we divide the tegion of Integration into two parts, we have

f1 (t) J hI(T) x(t-T) dr + hil(r) x(t-0) dr
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The .,egion o to 0 covera: x(i) in thr iuture, and the region 0 to w covers x(t) In he

past. If we know only the past of x(t), then f,(t) cian only be cstimuted. The best -mean-

square estimate of f(t) is gl(t), with

g11(t) u average of fI(t) over the future (226)

or

I(t) I h 1 (?) x(t--r) dr + hl((r) x(t.-r) dT (227)

Equation 227 follows from Eq. ZZ6 because x(t) is white, and therefore the past and

future of x(t) are uncorrelated. Since W(t) - 0 *Lr a Oaussian (zero-mean) signal, Eq. 226

becomes

g(t) •. h (1) x(t-r) di (220)
.0

and the beat estimnite, g(t), has been found. Putting this another way: the unrealizable

impulse response hi(t) has been replaced by kl(L), where

rh(t) for t 1% 0
k1 (t) otherwise

and

M I' k,(-) x(t--¶) d 7

This is a familiar result from linear theory.

Now we shall do the same thing for a meisud .order system II2, in which

YO~t " f. h2 (TI, T) 0-t'rj) x(t"72) d'rid-r

Splitting the region of integration into past and future regions gives

f2(t) "a•2 2 h 2(r 1r, ¶) x(t-rl) x(t--,) drdT 2

+ f j h2 (,i, '2) x(t-r1 ) x(t-•r) dT dT2

The factor 2 in the second term Is obtained by taking adc.antage of the a,.-nmetry

c0 h,(t1 ,t 2 ) and combining two terms. Again, g,(4), the beat estimate of fZ(t), is

obtained by averginig over the future. Since x(t) -white Qaussiav, the pant and
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fuiure are independent, and

0 0 .
g 2 (t) . 0 hZ(vlz ) x(t-r1) 7t- 2) dr Idr 2

÷ f ' f h,(•'l. %)2 xlt'Tl) x(t -r2 1 d~ d 2

f / h 2 (r 1 , -,,) 3(W -) x(t-" 2 ) dvTdr 2

Performing the indicated averages gives

g 2 (t) . J hZ(r, T) dv + /f h,•(, %) x(t-T1 ) x(t--Z) drldT2

Thus the unrea',4mahle system If has been approximated by a realisable systen K,

with IS a + K, and KS has an impulse response{ h 2 (t 1 t 2 ) fort, and t 0

0 otherwise

and IO is a zero-order system (a aonstant) of value

ko is / h2(v, r) dr

In gence-al, this procedure can I' uotid to show that an. unrealisable system H. Is

replaced by a best realizable system K(n), with

Kn (n) vi-r (230o

The Knsr havo impulse responses kn-r(t ....I nr and for r odd and all ti (where

i l , ... n),

kn-r(tlI I....tnr) 0

for r even and sAll tI a 0,

• (r-l)(r-3) .,. If * ... hn(vr. TV I

T r/Z, r/Ztlt2' .... Itn-r) d-l ... dr/Z

and for r even and some ti < 0,

• 0 (231)

Now that the roalizable system which is nearest. - tie mean-square sense, to a
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(6)

Id)

Fig. ?7. Example 7. (a) Delred operation, (b) Production of x.
(0) Desired operation on x, (d) Optimum ,lytem opera.
tion on y,

desired unrealizable system has been determined for a white Gaussian input signal, the
extension to non-white Gaussian signals can be explained. By means of linear shaping
filter Ll, a non-white Gaussian signal can be whitened. Onoe this is done, the optimiza.
tion can proceed with the resultant white Gaussian signal as input, That is, given a
deuireu ol.. "•!: :. - 1 + .. a + dn, tho signal 0(t) it whitened by L! to produce y(t),
and the np&tini.Aton is nmade for a desired mynornm H L 1i.1 with input y(t). The result.
ant realizable system is I, and then the optimum systom is S Li .

A further generalimation can be made. Suppose that the input signal is the result of
(or the statiutiol equivalent of) a known nonlinear optiration, _4, on a white Gauasian

signal. Furthermore, assurne that this system L has a stable, realisable inverse, L'1.
Then, just as before with bl* the optimisation pvocedure can be preceded by the L-1

operation,

S, 8 EXAMPL, 7.

In this example we desire to obtain the best mean-square e~timate of f(tJ a y (t+T),
where y(t) Is a Gaussian signal, and T in positive. In other words, we want to find the
realizable sysiem closest to . 2 . with

dZ(t 1,tZ) a 6(t1 +T) 8(t2+T) (z)

Now, take

D (w Z+y)
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The shaping filter LI has a trv.-form

D(g+,)

We op- ate on y(t) with to produce a white Gaussian x(t), as shown Ir, Fig. 27b.

The desired operation on x(t) (see Fig. 27c) is B2 a L2 * L1 and

N2| ~ 2 e sa I T L I #~ * ,T
820 0 2 I( d @ " l'(s2)

Applying Eqs. 230 and 231 to determine the be- .eaiizable operation on a white

Gaussian signal gives IS x2 + Ko, and

kz~ 2 )"1 {p I-t +T+Q 6-0(l+)

S{P '2
+T C 2  } for t , 0

* 0 otherwise

and

k {IT(P ." _r+Q .pr),

where P r ' ii-e,/( •, and Q T D(y-P)/(e-3) 'Ihe optimum operation on y(t) is, then,

L ' L' 1 , atd the optimlim yN.ter iN shuwn in i'Lg. 27d.

S. 9 E•CAMPLE S,

This example deals with th.. predictiun of y(t), where y • (N•gLl)[x]j x(t) is a white

Gaussian signal; l[s)] - * + Z3; and

L I(s) a (233)
(s+.)(s+p)

Operating on y(t) to produce

xa (171*-I Y]

and performing the optimization on x(t) gives an optimum pre9di4torJ, which operates

on y(t). with

J n M * _Kl L! (234)

and

N[z] - reny + y 3  (235)
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wh-re

+ I e-ZaA + e--2A e( ) (.36)(A-a) .Za,

K I (') cl + c 2 ` (237)

Pee-cA + 0e-PA
e1 2 (238)

e-aA .- PA (239)

See Appendix B. 5 for further details.

S, 10 THEORETICAL DISCUSSION ON MEASUREMENTS

The way in which the mystem impulse reponseoi may be obtained by meaurements
made with a white Gaussian noise input will be demonstrated here, The quantikie, to be
measured will be Input-output orosoorvelations. However, at this time, Ouoh meas-
urement, can onily be discussed theoretioally.

Let the input x(t) to a lineer system IS be white Gaussian nolse, and the output be

fI(t). Then

' !( ý t-T~ hl(-r) xlt-1) x(t-Irl dr

= hl(,) G(T-,) r

a hi(T)

This method, which in known from linear gheory (8), is one means of measuring the
impulse response of a linear system,

Nnw consider a quadratic system 112 with input x(t) and output t2(t). Then

f 2 (t) x(t-T 1 ) x(t-TZ) If h 2 (T!, v2 ) x(t-'r,) x(t--r') x(t-T 1 ) x(t-T 2 ) d-rld 2

+6(T 2-'r 1 )6(Ti-"r,)} d Idrd2

6(TZ-T 1)Jf h 2 (r, -) dY + h 2 (T 1 , T2 ) + ha(T 2 , T1 )
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We note that ( {h (TP,T )+112 (Tr,Tj)j is the Rymmetrical form fot the quadz'atic Imnulse
response, and so

f2 (t) x(t-TI) x(t-T 2 ) a 6(T 2 -TI) I h,(iT) d'r I ?h2 (T,,T 2 )

Measurement of this second-order crosacorrelation, f2 (t) x(t..T,) x(t-'12 ) In,, T1 OT2 ,
therefore yields hZ(TIT 2 ) for T 1 0 r". The function h2 (T, T) can be obtained by c osae

correlating f2 (t) with {x 2 (t-T)-.-•t)}. Then we have

.t) {x,(t-T)-x-'t') , • 2h,(T, T) (240)

For white noise x1(t) dIr. not exist, but it does exist for any practical approximation to

white noise.

For the cubic system 1j,, we have

f3 (t) x(t-T 1 ) x(t-TZ) x(t-T 3 ) - 6h 3 (T,.T 2 ,T 3 ) + 36(TI-TZ) I h 3 ( ,tT3) d?

+ 36(TI-T 3 ) ,fh3 (r,,r,T.) dT + 36(T 2 -T3 ) 1 h3(i,,,Ti) d+

whl' gi!,"o h 1 (TL, TPA T3 ) for T 1 0 T 2 0 T$, To obtain h,(T1 , TZ, T 3 ) in the excluded
region, si amilar to the mreautusuenwu indicated in Sq. 240 can be made.

Higher-order systems Hn can be handled in an analogous manner. If the measure-
menta are to be made on a system U 1  + n + A.g .... then to extract the 1j

term, for example, the measurement of fTitx.-'T. whare f(t) is the output of i with
input Ax(t), may be made fat at input Ax(t) for different values of the constant, A, Then
th3 part of fI t) x(t-T) that varies as A will be hI(T).

Similarly, for f(t) x(t-T1 ) OT 2 ), the p.art that varies as A2 is 2h 2 (T 1,T 2 ), for
Ti 0 T.. Thus, the Taylor's.series method has boon applied again to meparate the var-

ious Un of the system,

S, 11 SUMMARY

We have shown how output avorages and correlation functions nay be obtained for

nonlinear sy,,tems described by the functional representation. Irmphuia has been placeS
on Oaussian input signals, and frequency-domain terhniques have been developed and
Illustrated by example;.

A discuseion was devoted to the problem of optitnum nonlinrear operations oi Oauttian,
or Gaussian -derived, nignala, Two eanipleas of the cptimization procedure were given.

The sectinn on theoretical moanurement wan inten, A to show brtefI!' how input. output
ccosscorre;,lion Measuremne.nte can be used to nenjur, the system impulse responses.
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VI. THEORETICAL ,I1SCU!!3c)N OF FUNCTIONAL REPRESEN'rA'rIO',

A tiumber of theoretical topics concerning functional representation fnd the a)gebra

of systems will now be presented. In the first few sections we shs.. -Attempt to place
certain aspects of this algebra on firmer growid. Tiien we shall discuss some topics

that p.,escribe theoretical limitations on the functional representation.

6,1 DOMAIN AND RANGE

We have stressed the point that the amplitudes of the input signals of a nonlinear
system are very important. They are impot ýa.t for two reasons: (a) the system may
act in a radically different way for two signals of the same wave shape but of different

amplitudes, and (b) the method of analysis may derend on some limitations on input-
signal amplitude. Therefore, to be rigoroua, we ohould associate a certain input limt-

tation with any noalinttr system that is being discussed, This limitation will be the
"domain" of the system, For the system H it w:dl be denoted D., and it is the class of

all allowable input signals, If a signal x falls ir, this clcsu we write x ( DH (in words,
x is contained in DH), A convenient way to particularly define DH is to say that there
exiita a positive number of X th-it i1 such that if Ix I < X, then x i DII In general,
there are many ways to define the system domain.

If a DH is defined for a system H, then the outputs f that are associated with the
inputs x, where x 9 DHI form a -.lass of signals, This class will be called the "range',

of thi . .=.:.o.Yndvill be der.ated RH. If f t H[x], then ft RI, for all xcDiH,

A qu•t.itton now arises about Wl,uL ,,ippcns when we additively combine two systemE
of different domains, If L. • _J + K, where J has domain Dj and K has domain DK#
then we ihall take the domain of L, DL' tu Uc the class of signals that are contained

in both D and DK. 'Therefore, we shall col',Iu, only inputs for L that we know arr-
allowable inputs for both j aad K.

Similarly, for ths multiplication eombination I. a ,J, K, DL is the class of signalu
contained in both D and DK.,

For the cascade combination _L n J * K, we must assume that th. range of K, RK,
is contained in DJ, If this is. not so, then DK must be constrained so that RK is con.

tained in D X

In this report we have assumed that these points were implied when we have

combined systems.

6,2 ALGEBRAIC LAWS

The validity of n.ertain operations, which has previ::usiy been assun Ad (kee
sec. 2,8), wili be established here. 'rheme opt rations will be presented an a set
of theorems.
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"THEOREM 1, If A -B ý4)

then A +11 t B +H (?42)

and H 4 A = H + B (243)

This theorem holds also for tho minus operation,

THEOREM 2. If A = B

then A _ H' B. - (244)

and H, A =H.B (245)

THEOREM 3. If A = B

then H * A = H * B (246)

and A * H r * H (247)

Systems A, B, and H sr' nonlinear. Theme theorems are easily proved.

Let p= A[x]; q B[xJ; and r e.Mj[x]. Then from Eq. 241, p =q. But p + r q + r,

and so A[x] + H[x] B[xJ + H[ki or' A + H = B + H.

Axiom I (Eq. 34) givew H J. A w H + B directly, and so theorem I has been proved,

The proof of theorem 2 is similar, Now, theorem 3 wIll be cestablished,

Take p and q as before, and then. since p = q, we have H[p] = -1(q] or [A[xl=
_H[_B[x], and so H * A = H * . Hence, Eq. 246 has been proved. The proof of Eq. 247

THEOREM 4. If A and B are known systems, and It Is desired to find an H with

the property that

H * A - B (2441

then H, ii it exists, is unique.

In other words, there is one and only one system H that satisfies Eq. 248, (Of

course, there may be no m uch system. For example, If B = and A ý N2 , then, because

we cannot tell whether x t is die to x or -x, no H exists.) It is assumed that DA = DB3

and H is only defined with a domain DH that equals the range RA.

To prove thin theorem, take H and (H_+K) to be two systems that satisfy Eq. 248.

Then H * A = B, and iH+K) * A = B. Hence, by theorem I (Eq. 242), H * A - (H+K) * A
-f, or K*A = 0, or K(y] r 0, with y = A[x] and x 4DA. Therefore, by the defirni-

tion of the zero system (see sec. 2. 5), K = 0, for domain D K equnl to the range RA.

Hence the system H is unique, in this domain.

THEOREM 5. If A is a known system, and we desire to find an H which is uch that

A * H =- (249)

then H, if it exists, is unique.
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To prove this theorem we pret:timade Eq. 249 with U to obtain P * A * 11 f Y! By

theorem 3 (Eq. 246), this operation i; valid, Thent we have

(H*A) *_ (2a0)

by axiom 5 (Eq. 38). But, Eq. 250 iA4 obviously :nived by

ii * A = 1 (Z51)

and by theorem 4, Eq. 251 is uni ue. Now, applicatin of theorem 4 to Eq. 251 shows

that Hj, if it exists, is unique. Hunce theorem 5 ts proved.

THEORFM 6. If A *] =.I•. (252)

then H * A z L

That A * j implies H * A = j was shown in the proof of theorem S.

THEOREM 7. If A and R are known systems, and we desire to find an H with the

property that

H + A B (253)

then H B - A (254)

uniquely.

Substitution of Eq. 254 in Eq. 253 gives B-A+A=B,, and so ijj]B-A is a

solution. To demonstrate uniqueness, two solutions are assumed and we use the same

prucn. - :* In the proof of theorem 4.

6.3 FEEDBACK AND INVERSES

The feedback system that will be investigated is shown In Fig. 28a. Thi' is a suf.

ficiently general system h--ause, rs was shown in section 2.8, any single-l. op feweioac'(

system can be reduced to this form, followed by a feed-through system.

The system equation is L a I + H * L or after rearrangement,

(I-H) * L = 1 (255)

This is recognized as an equation for L of the same form as Eq. 249. From theoerem 5

we know that L is unique. It exists, at least in some sense, because L is the feedback

bystem and can be built. Furthermore, from theorem 6, we kLow that

L * (I-H) : I (2F6)

Now, if

H l - K (257)

then, by substituting Eq. 257 in Eqs. 255 and 256, we obtain

le * L - I. -r _L * K P)
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Thus we have shown that iL i possible to use a feedback system to conLtruct the

unique inverse of a nonlinear system K. An inverse K_ of a system K satisfies the

property

KI *K= K*K-1 =I

The feedback system of Fig. 28a is also an inversion system becaune we have shown

that

(I-Lf) * L . L * (1-H) r I

Hence the inversion problem and the feedback pr'ilion are essentially the same. There-

fore, we can write L K 1 .

As it stands, this feedback system for obtaining an inverse (see Fig. Z6b) is not a

practical physical system because of the unity feedback. A possible way to overcome

4 -. =

. • • Fig. 28, Feedback and Inversion; (a) feed.
back system; (b) inversion system;

S-(c) equivalent inversion system.
(h)

this difficulty is to use the results of section 4. I to produce the equilvildt system shown

in Fig. 28b, where Kl 1is the inverse of the linear part of K, that is, K, and KT

form the system (K-K,).
The fact that the feedback system defines an algebralcally uni4uc &ystem, and that

the inversion sy&tem produces the unique inverse, does not exhaust. the uniqueness prob-

lem. Another uniqueness problem will be discussed in the next section,

6.4 INPUI-OUTPUT UNIQUENESS

It is quite easy to visualire a nonlinear system in which the munte output Iu produced

by two different inputs. A simple example is found in ýe no-memory squarer. If we

could constri.(t an inverting feedback system of the fv, .n of Fig. Z8b for such a system,



thure would be two possible outputt f•. a single input. Physically, such a situntion is

untenable, and the inversion system would exhibit some sort of erratic behavior.

This situation of two or more possible outputs for a single input Is not limited to

inversion systems because the inversion and feedback problems are ý.sentially the srne,

and hence a feedback system moy also exhibit f.i. difficulty.

No.memory feedback or inversion systems are easily handled beauuse the output

car be plotted as a function of the input. Therefore any lack of uniqueness at the output

is readily detected. In the feedback system of Fig. ZSa the impulse responses are

bounded functions. We shall show that for such systems the Jrput-output relation must

be unique, if an output exists.

We shall consider the system of Fig. 28a in the particular situation H a H + HP, and

we shall briefly outline a technique for handling it thit was described b. Volterra (I).

Let the input be x(t), and let there be two possible outputs, f(t) and g(t). Then

f x +1(f

and

g *x + H[gI

or

f- x +HI[f] + HZ[tf (259)

and

9 a V + $:4 .H[ (260)

Subtracting Eq. Z59 from Eq. 260 yields

f - g = I[f-g] . HZ[tf - Hz[g] (261)

But

g2 [f] - [Liz2[ Hzf 2 - H2ig')

-S2(f2 -g )

= H2 (if4g)(f-gi)}

Thus Eq. 261 becomes

f - g = L 1[f-g] 4. HZ((f+g)(f-g)) (262)

or

p r _!i[pI + H2((f+g}p) (263)

where p = f -g. Equation 263 can also be written

80



pit) hi(,r) p(t-r) dT +if h2 (r 1, ,Z){f(t-.r1 )+g(t-r,)} p(t-,r2 ) dr 1 dr 2  (264)

where h 1 t) and h 2 (til t2 ) are the impulse responses of j1 , and H2. k'epectively.

Now, define

k(t, 0) a h 1()0 h 2 (,r., r){f(t-Tr) + g(t-.rI)j d-. 1  (265)

and Eq. 264 becomes

p(t) a fk.' -r) p(t-r) dr (266)

Since hI(t) and h 2 (t 1, t2) are bounded functions and f(t) and g(t) are assumed to exist

(that is, to be bounded), k(t, r) is a bounded function. Then, Eq. 266 can be shown to have

a unique solution, that is, p(t) z 0. Therefore, f(t) a g(t), and f(t), the system output,

is unique.

This can be extended to the situation L = HI + H2 + . .. + In, where the impulse

responses are bounded, with the result that the output is unique,

Certain unbounded impulse responses can also be considered by this method. For

example, if Hl . H12 n .A, _N2* then it can be shown that the impulae response is

h 2 (t 1 , t 2 ) - al(tl) 8(t,-t 2 ), where al(t) is the impulse response of-A,, and n 2 x 1. This is

an unbounded impulse response, and this case can be shown to be unique. The one place

where this test cA,',IU as with H a N + K, where, N is no-memory, and K has memory

u' is zero, This case can -xhlbJt a nonuniqu.- input-output relation. It seernis to be a
fairly safe assumption that this is the only nonunique situation, In case of doubt, the

test procedure outlined above can be used to teet for uniqueness.

It should be noted that the fact that the system uuLput is unique does not guaantec

that the system is well behaved, The output of the system may become unbounded (fail

to exist), or some other instability, such an a limit cycle, may exist.

6.5 FUNCTIONAL TAYLOR'S SERIES

We have mentioned that the functional series is closely related to Taylor's series.

Here, this relation will be specified in more detail.

Consider -a system Pi with an input ax(t) starting at t - 0, where a is a constant,

Let f(tI) be the output at a time t = t 1 . The output will depend on a; therefore let t1

be implicit, and consider f as a Junction of a and write it as f(a).
Now we can expand fla) in a Taylor's series about a = 0. Thus

2 n (n4l
f(a) w f(0) + af'(0) +1-- f"(0) + +. . * ' t(n)t 01  + n+l (267)

21 n i0 f (0) 2)

where f(n)(a) it. the n th derivative of f(a), and 0 is F,. .ie iumber between 0 and a.
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In particular, if the inpL. is x(t), then a 1, and we have

f(l) = f(0) + f1(0)+-L,(O)f+"+(0)0) + .- I f((+ 1 (0 (468)

Since the input is 0 when a - 0, tha can be .:-lled a "Taylor 9 series about zero input.'

The ladt term in the series is the error term and if it could be estimated, an idea of the

truncation error for Taylor's series could be obtained. Unfortunately, wv have not

been able to estimate this term.

Fig. 29. Feedback system.

In order to illustrate that Eq. 268 is indeed tho lun.;tfonal series that constitutes

the basis of this report, we shall consider the feedback system of Fig, M9. Then

f - x + K[f] - _j[x], and

f(a) - ax + K1[f(a)] + K2[f(a)] + K3[f(a)] + .. . (269)

Therefore

"(', T 0 + Kif(0) + ,., (270)

Since Eq, 270 is the feedback systes, •,ih zero input, f(0) = 0. Now, as we know from

linear theory,

d
dZ Kl[f(a)] a Kl[fl(a)]

Also, by symmetry,

d K [fla)il. d K (f?(l))

d / k, 2(l faf t- A ..- dr,d,,.

d
J/'z(tI( lra) a(fl(a, J_ -'r)f(a, 4-r 2  dr)dr.

fJkiri, T 2 ){-51 fla, t-r 1 ) fla, t-i 2 ) + f(a, t-i 1 ) ~l , t-.r 2)}ddt

* 2K 2(F'(a)f(a))
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Similarly,

dK*3[f(a)] 3( f'(.))

3K3 f' (a)f (a))

and so on, for the higher-order terms, Then

f'a) x + K1(f'(a)] + 2K,(f'(a)f(aj• + ...

and

f'(0) i x + Kl(f'(O)] + MzK(f'(O)f(a)) +

But f(0) a 0, and so I(0) = x + I[lf'(0)J and, after rearrangement, f'(Oý . [xj,
Similarly,

f"(O0) (2(I-KI)"1r * Kao ((-K 1 ') 2 ) jX

and so on, Substitution of fl(0), f"(0), etc. in Eq. 268 shows that the resultant series
in the same as that obtained in section 2. 8 (see Fig, 14).

Since the functional series is so closely related to Taylor's series, we should not

expect that the functional series would always converge, The functional series

It V --1 + _Ha + +. +/n + '".

convergov for - . x(t) if the output .nri•r.
f(t) • fI(t) + f2 (t) + ,., + f (t) +

n

where fn(t) u Hn[x(t)l, converges.

For example, consider the qystem .-f Fig, 30. The cystem equation in
/ 2'

f(t) = x(t) - J f() d-r (271)

When x(t) in a step function, sterting at t - 0 and with amplitude +1, it can be shown
that f(t) M z/(l+t), for t a 0, by solution of the differez.tial equation (Eq. 271). If the
functional series is developed for this series and the result of a unit positive step input

is obtained, we find that

f(t) X I - L+t2 - t 3 + ., for t .%0

This series is not convergent for t > I, but th3 solution of the differential equation shows
that the output is well behaved. Therefore, if the output of a sy.tem, which is a alyzed

by the functional series, ti not convergent, we still cannot assume that the uutput of the
system exhibits erratic behavior or becomes unboundeU.
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Fig. 30. Simple feedback system.

Brilliant (4) studied the coi. 'ergence of the functional serieb and oblained a conserva-

tive bounding procedure. hir results can be extended somewhat by replacing his norm,

Ilk.II, where
IIknII . ... f Ikn(9*l* ..... ln)J d , .. 4-r

by a new norm, IlknllT' where

l , I T . ... f kT . ..... c. i -r ... d r

In this case we must constrain our considerations of the output to the time interval

0 4•t 4 T, rather thati to the interval 0 4 t 4 a considered by Brilliant. (We assume

here that all inputs are zero before t = 0, and that the Impulse responses are realiz.

able (zero before t < 0),)

At the present time, It appears that any general convergence test should be con-

sorvacve. art, 0..-t It is best to consider the convergence of each particular case Inde.

pendently. As the example illustrated, vrrnvergence difficulties can ariae. From a

practical point of view, however, the representation is very unwieldy if the convergence

is not fairly rapid, But the rapidity of conv,.rgence can usually be easily determined

in any particular problem by writing out a few terms.

6,6 THE ITEHATION SERIES

Even if the iunctional series that we have uged in this report tails to converge, it

does not mean that the funcýJonal reprebentation fails, There is always the possibility

of finding more general functional series that wi'l converge. In this section stch a

serlem will be briefly discussed. This series will be called the "iteration nerlca"

because it is formed by an iteration procedure.

Consider the feedback system of Fig. 31, with f x + 11[f] L[x]. A firpt estim.te,

f,,), could be made for f, where

( : =(272)

A second estimate is

f(2) - x + H[f(j)] = x + H[xj (27 3i
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and a tthird estimate is

f( 3) : x +. 11[f (2)]

Sx + i[x+H[xj] (274)

In genera', the nth estimate in

f(n) ' x + 1[fin-10 (275)

If we let

f (n) L(n)[xJ (276)

then L,(n) is an approximation to the actual system L, and

_L(2) 1 + H

L(3 ) I + Hi * (el1)

by applying Eq. 276 to Eqs. 272, 273, and 274. In general,

1-(n) "_1 + L * L(n-l) (277)

In the limit as n- -0, direct substitution of 1(,, in the system equation, L x I+ U L

for Fig. 31, shows that the equation is satisfied. In practice Lw(n) would not be used

in the limit. hut w-. 1 • be truncated at some point: that is, L(n) would be used with a

finlte n as an approximation to L.

Any physical feedback system has a delay around the loop. This delay is usually

too small to be important, but it has an interesting effect on the iteration serles. Let

the feedback element Hi be reolaced by P * B, whei a D is a delay. If this is done, it
can be shown that the iteration series is automatically truncated at some 1 ,(n), where

n depends on the length of the delay and on the time after the input has started at

which the output is being observed. This occurs because the iteration procedure

of Eq&. 272-275, with H• replaced by I? * H, is the actual sequence oi operations in

4 he system. ItA the first time interval, 0 to 6. where 6 Ic the delay time, the outpost

is x(t) because the delay holds back the feedback. In the next interval, 6 to 26, the

output is x(t) + L) * H(x(t)J, and su on for each interval. This in prsci.sely the Iteration

Fig. 31. Feedback system. Fig, 32. OliLgram of iteration series.
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procedure. This can also be visualized by mneatis of Fig. 32 (which was suggested b.

G. D. Zames). Thib system is en'uivalent to the feedback system of Fig. 21, with II

replaced by D * ff.
The itoration series, then, is closely tied in with the actual seqvence of operations

in a feedback system. Therefore, it seems reasonable to assu'u, that if the lteralion

series tends to become unbounded, the aftua] system output will tend to become

uwvounded. (We note that the delay in a physical system will keep the output bounded

at all finite times, but it could get larger as time increaser, and the gy.+•m would thea

be said to be unstable.) A ve.y simple example no this is the system of Fig. 31 when
II = A I. where A is a constant. Using the iteration series for this system yields

f(t) = x(t)(I+A+AZ+A 3+.., ) (278)

and hitl veriea becomes unbounded If A > 1. It i, known from linear theory that the
system is unstable if A > 1.

Thus, we Pee that the iteration series Is much more closely connected with th,

physical world then the functional Taylor's series. As a practicae tool it is not, now,

very useful because experience has shown that, when the iteration series is rapidly

convergent, the functional Taylor's aeries is also rapidly convergent. However, it does

present the possibility of using other functional series than the functional Taylor's

series.

The convergence of the iteration series can often be determined. If a linear feed-

back system (Fig. 31 with H n H.H) has an input that starts at t = 0, and ihe impulse

response hi(t) is bounded, then at any finite time t, the iteration series can be shown
to &J.. ý;ý..,'Cf "t 11).

Ltt us assume for a feodbarilc System (Fig. 31) with a nonlinear feedback element

H that the following (Lipsohitz) condition holds.

lH[ ]-H[Y~l 1 IKI [X-Yl I M91

where x and y are any input signals, and Nl Is some linear system with a bounded

impulse response. (Actually, the Impulse response kI(t) need be bounded only over a

time interval 0 to T if we limit our consideration of the output to this interval.) Then

we can show that the iteration series for this nonlinear system ,.unverges at any finite

time after the input has started. This iR done by appropriately bounding the terms of
the iteration series of the nonlinear system by the terms of the iteration series of the

linear system obtained by replacing H by Ks. Then, sinco the iteration series for the

linear system is known to converge, the iteration series of the nonlinear system wA'l

converge. Referring to the results of Section V, we recall that the output of such a

system is unique, and hence the iteration series converges to the true output of the

nonlinear feedback system.
A system H that satisfies Eq. 279 might well be ca, lied a "eaturti...n" system

because it is bounded by a linear system. An, ordinary &aturation curve (for example,
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the flux-current _-aracterlstic of a mag:ietic material) is bounded by a linear" Curve.

6.7 CONTINUOUS SYSTEMS

Let us consider a system Li with an input x(t) and an input y(t). Fc'om an intuitive
point of view, we could say that H- is continuous if 1l1x(t)] and Hly(t)] are close together
and if x~t) and y(t) are clone together.

Brilliant (4) defined a much more rigorous concept of continuity. First, lefine a
distance between input functionn x(t) and y~t):

•t-r fx(-r)-y(-r)l d"

for r > 0. Define another distance-

IJ.[xCt)] - Hiy It)

between the outputs aI[x(t)] and H[y(t)]. Now we have a precise measurement of dis-
tance, and so closeness and Qontinuity can be rigo'ousl) dWin:ed. The following defini.
tion is not the only possible definition of continuity, nor are these distances the only

possible distances that could be defined.
If we have a time-stationary system 11, and bounded inputs x(t) and y(t),

Brilliant's definition of continuity can be stated. H is continuuus if for any e> 0,

there exists a T > 0, 6 > 0 (T sufficiently large, 8 sufficiently small), such that, if

t;-." •.) I<', 6, for 0 4r •:T, then I~x(t)[y(t)]J C .B. rilliant also showed

that if 1 is continuous, then for any 4 ;. 0 there is a polynomial system 1(1)0 con.

sioting of the sum of a constant, a linear system with Lebesque Integrable impulse
response, and products of &uch linear systenis, such that, for any bounded input

x(t), I.H[x(t)]-_.(()rx(t)]I < 1. That iv to say, if H is continuous, then it can b, cloz,-y

approximated by

_10 +H ,.. +_Hn

where

I systems

The sum Is over a number of such products.
This is a sufficient condition only for a system R- to be approxIn- ed by the func

tional representation. Certainly other systems can be approximated. The "tatement
is, however, a precise mathematical theorem describing a set of systems that can be
expanded in the functional representation.
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6. 2 CONCLUSION

In conclusion, it is appropriate to •iuention some of the futuri prospeutb for the fi'.io

tiunal analysis of nonlinear Rystems.

First, of course, there is the app.icidion of this form of ar•.lysis to actual engi-

neering problems. Moreover, the general nature of this system representation makes
it a possible tool in the investigation of several general problems, for exr-.mpln, the

question of what t onstraints oii th( open-loop responsu of t nonlinepar feedbacH system

are necessary to ensure the stabiliy of the closed loop.
The functional representation, as it now stands, still presents problems. The

principal problem is that of obtaiiving a seriei. ,!A, has rapid convergence when the func.
tional Taylor's series is not rapidly ccnvergent, us not convergent at all.

A situation of considerable interet occurs when non-•aussian random signals are

being investigated. Optlmization problems then point to nonlinear systems, and the

functional repreae tAntioL, seams to be a good system description tu use for such pro,.

lame.
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APPEND.IX A

TRANS FORMS

1, SYSTEM TRANSFORMS

The on. -dimensional Fourier-transform pair is defined as

F(jW) Jc f(t) c'Jut dt (A-1)

2ir F(QW) 0+t w(A-2)

A multidimenisional generalization of this Is the transform iair:

FnJ ... jWn) . ... fltcf .. ( . tn) dt1 ,.. dtn exp(-Jw It-, .. -Jwntn)

(A-S)

n(tl. ) t i,,f F n(jW V.... Jwn) exp(+Jultl+. ,+Jwntn) dwu ... d. n

(A-4)

Another generalized relation is the multidimensional Parseval theorem (6):

w-o J- n~ll I....1 'n gn(tl. .. til ) dltl ' 'dtn

(1)n... n. FlJWl .... IJ nr) (.1w. 1w,) dw, .. dwn (A-5)

where fn(t 1 .... tn) and Fn(JWI ..... jwn), and gn(tj .... It) and Gn . . are

Fourier-transform pairs,

If f(t) n 0 for t< 0 and

fo0OD If(t) Ievtd < cc (A-6ý

where v Is a real number, then we can define the unilateral Laplace-transform pair:

Fin) = flt) W eNO t dt (A-7)

((t) - 2 F(s) e+st ds (A-.)

wl,.tre s - r + .%. The multidimensional gcneralizativi of this is
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j: '" .. . f (t t ) dt dt ex ( t (A-9)

Sl r +job 0, 1 JJ W .

... * ) "J o ' en-J0

exp(+÷1 t,+. .. +Sntn) doi ... den (A-10)

where ,I.,... on are real nun.liers, If fn(tl f.... td) Is synmmetrIcal, then o.

Wna . a.

2. ASSOCIATION OF VARIARLES

AMourne that we are given ti(t)I ... and Ito tranaform Frn{m, .a. Thia

tranfor'm may be Fourier (m-Jwil), or Laplace. The problem is to find the transformv
of fW(tll t2 , t11.... tn) from I ,n~aI .,.., an), (Actually, we are associating any two var.

lables ti and tj, For convenience, take I 1, 1J 2. There is no loss in generality.)

Call this transform G,-, 11, ... S n). Now, by nottinq t2 . tI in Eq, A-10, we have

fntl tI3 ... n) 2 ,1/)Wl-Jac Ln-J00 n

hxp(+sItI+- 2 tl a3t3+... +sntn) d-I1 ... don (A.Il)

Then

.li* ..... in), n./ 'zJ '" "/i• wn+J ý1(-•G on'l... )

exp1+(Hl+*2)tY) doi} exp(+Bitj+. ,, +antn) diz ... dill (A-12)

Setting NI + 02 a u1 gives

frl IiI , fn . i 1 ,0,43 n

exp(+ult 1 ) dul} expl+u 3 t3+... +Dntn) doz ... Ian

I n-I fa+jo*e 3.n4w fI an+j. (I u
• Fn.(U1 ,- 2n 2'

-j 3 r n.* -'jot 2-

o....n) do,, duid,. don(A-13)
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where a is chosen so that the Integral converges. Now

f it 1 t It t -1 -n-1I leo+J~oo "w3 +Jac .I. an+Jae
nt t' n i•j) .1 J-Jr* Ja. 3 -jw f

CGn-I(G 41 3 ..... IVn) exp(+aIt1+5 3 t3+. .+R ntn)dt dtd3 ... dtn1

(A-14)

and hence, if a2 is replaced h-f u, and uI by ae, in Eq. A-I3, we have

Gn-1(8l, 'Y .... -n 2• J ir . 2.J00 n al-UU, S3..... +Je Fnaa ) du (A,-I.5)

Specification of n 2 gives Eq. 115.

3. FINAL.VALUE AND INITIAL-VALUE THEOREMS

Consider a multidimensional function, fn(tl I... I tn), Ind its transfurm, FnC(81, .... a).

Define

i1ltl;8 ..... I 'n) . ... f n(t1  ..... td) exp(.2 tZ-,.. -seth) dt 2 ... dtn (A- 16)

Then t.e ""'st-order transform of gI(t 1;8 2 , .... an) is

a (513S2 ... n) 9 10w 'I0l2 ... n)exp(-m t1) dtl

SFn( . n) (A. 1)

Now, If we regard 621 .... In an fixed, g 1 (t 1 ;8.2 . an) and G I(aa;52' .. ) make

a first-order transform pair, Then, from linear theory (9), we have

lim g 1 (t0;s 2 ... an) Lim Ga(a 1l; .. . .) uI (A.!8)

and therefore

Lrn g,(t 1 s2..... si) Lir Fn(al a . ) a (A-19)

But

lI... a lin fit .... exp(- t. a-, t dt . dt
t 1-0 n IJ Wf u r - rl 1 2 t

Lim fl g4 )} exp(-s,-. r) dt2 ... dt-, . . .
t Goof t1-n n 9
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Therefore the transform of JimtI"00 fn(tl . . tn) is

Jim Fn(S a )
1 "0 sn) I fA z A 21)

ThLi justifies the Umiting procedure used in Cecton 5.4,
Successive use of Eq. A-2) !ghows that

Un f n(ti, t Urn a c s , (a a . a
h-0 n (A-22)

tn " an -1 0

Now

Jim f 0( •rn 
ft(t)

(lQ "" n) " - (A-231

where tn(t) x t(n)(t° t ... 0. t), and so the final-value theorem of section 3.4 is proved.
In a similar mainer, the initial.value theorer, ot section 3. 4 can be proved.
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APPENDIX B

PROBLEM DETAILS

In this appendix, we shall give ft'rti~er detaila fir some of the problems of Sectionw III

and V.

I. PROBLEMS OF SECTION 3.5

S~ystem A is given by

K' N * 1

i 1 " n3 KIi * n5 -81

K I + K3 + K5 (B-!)

where the coefficients associated with the nonlinear no-memory system a j + Di3 + W5
are n 3 and n 5,. Since K, has a transform H/(s+u), t11. trarifcrms of the system K are

Ks) H (B-2)

n$H3

K3le1, sz, 53) 3 (B..')

n5 H•

K.5(.! us ) -" (B-4)
is1+) .. (s+a)

by use of Eq. 90. The input is Re {xJ't), and, Zr..r• section 3. 3, the complex amplitud,
of the first-harmonic output is

+ - K3(Jw, jw, -Jw) + ' K5 (Jw, Jw, .w, -jw, -Jw) (3-5)

The third-harmonic complex itatput amplitude ts

T K3(jW, JW, JW + A K5(jW. jW, jW, JW, -jW) (3-6)

and the fifth-harmonic complex output amplitude is

-II K51A ... JW) 111-7)

Substituting the expressions fur the transforms (Iqs. B-2, B-3, and B-4), taking
w a 0, and defining B = H/a (the linear undisturted gain) gives the low-fr- que-acy

a:mplitudes:

first-harmonic amplitude =B + 1 n 3 B x3 + 1 n A 5B-1
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third-harmonic amplitude I .- X 13 6 + l1 n0,1-1 (3-9)

fifth.harmso~ac amplitude 1. n 5 B X (B3-10)

Defining

'irst-harmonic distortion fLirst.harronl- amplitude - B

third-harmonic distortion n 'hird-harmonic amplitude (B-12)

fifth -harmonic otmplitude
fiftn.harmonic distortion - ,an (B. 13)

and substituting Eqs, B-8 to B. 10 gives Eq.. 145-' 67 of example 2.

Now the feedback system B can be considered. The system equation is

L- a L4 * HI * (A.1,) (B-14)

where A is a gain constant, and L represents the feedback system. Substituting

Eq. 144 for f, taking

Ida l + L2 + '.. (B-15)

and determining Ll, Le, etc, by the methods of section 2. 8 yields

a! U, * QI+AUI)" 1  (1-16)

j (L+A~l)-1 * 3n,(L2 - (At[, 1 L,)) 4 n5 i4 (B-18)

for the first three terms. (All evn terms are zero.)

The transforms that are found by the relations in section 2. 9, are:

Lila) a a + AH (B-19)

(s1t4 S 2 +o 3 +AH H H H HL3(e°•2lJ)-+a + 2 ÷ +a +AR" 3 sI + a AHs +I÷a ÷ -H5 +a•+ AH
1+52 +3 1aA) 5 + 2 6 53

(B.-70)

el+... +3+ a

L(all . I5) = - , + - n3 L() L1 (s,) --- AH"5 .1+ +a5+a+A a 3 + 84 + as + a

X L 3(sBli. 2+ 3 ) 4 n5 LO(S) ... , L8(31)

Calculating the distortioni ratios as we did in Eqs, B-8 to B-13 gives Eqs. 143.

149, and 150 of example 2. 1! the conditions on - .-ize of the distortion r.atios
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given in example 3 are nr,%t then these three terms of the series for 1. will he suVfi-

ciant,

2. PROBLEMS OF SECTIONS 3.6 AND 3.7

From the transform N - I + N_3 + N 5, the system equation it

L AN * HI * (I.L) (B.22)

where A Is the gain constant, H, i an ideal integrator, and

N[y] sin y (B-23)

Taking

_ (B.+4)

and applying the methods of section z. 6 gives

Ll A (L+AHI) * AH 1  (B-25)

- -. (LfAAjj ' I. (B.26)

The transforms are found by the r,!,l+ tons in section 2.9, and arc given in Eqs. 152,
153, and 154 of example 3. The output transforms are given in Eqs. 156, 157, and 158.

The output transform R 3 (s) is obtained froin Eq. 157, by the association procedure,

as follows ,

R AS 3  (51+52+13) j _ _

(3)12 3T' + +83+-XTsru +)s( A1 2 3 1 2 22ZT--A s33
A3(sl +82+41) IL - 1 14 .•-

1 3K A2 {s. 2

(3.28)

Associating 2 and a3 gives

S 3  11+12 + 1 I
+li +A TAT li 2 2(s+R+ss+As =2.

S3 . +2 a } J1 + 5 2 l,, A. ._L -" X + 1(B-29)

and asv•vating a, and a, gives
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R3 3 1, } 3j-30)•3s)="A- +-- " a÷+ A a + ZA a + 3A

Now,

R (all 55A2 (a+ +..0) 1

(5) T g " -- .+ . . +5 +.' a + L. 3 + A I to 4-A)

. 1 (B .. 1)

where the second term with coefficient p has been neglected because It is small. Car.
rying out the association procedure on this basis gives

8 5 a 0.5•5 O 4 0.5 3A
A47 A m7(sW +3 aj +, 4T~ + (s+A)

+ 6A _3A (B..32)
(s+2A)i (0+3A) .J

The transform of the output is

R(s) a Rl(,) + RZ(s) + R 3(s) JB.33)

a".4 the terms can be Lullected and Invertsad bý the usual linear methods to give the

outpwt " i) i , is given In M1. 1•q in oxampie 4). Only ono of the multiple.order poles

gives a ulgnificant contributiorn if A 9 1.

3. PROBLEMS OF SECTION 5. 1

The transform of 12 (t 1 , t2 ) is

L2 (s 1.,) a A B (B.34)(sj+sj+P)(8I,')sZ s

and we want to valculste

J 1
2 (, -') d-r (U-)

by the method of section 5.4. Therefore we associate sI and in Eq. B-34, whi:ch

gives

A H (B-36)
(s+(S•(s+ 2.)

Then
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I, d , 1i!.1 (stp)(s4Za)

A 2 B

A'• (B-37)

if 13 - 4, and so the first term of Eq. 218 Is

(H-38)

Next, we want to calculate the second term of Eq, 218, Equation 219 is the trans-

form of

2ff z1(TI, %) 12 (TI+÷r, T 2,+i 2 ) drldv2  (B-39)

and we want to associate s, and s. in Eq, 219 (T 1 and T, in Eq. B-39). Thus

2L 2 (-P 1 -2) L2 (. 1 , .$ a • 2As' p B t.-I+" I2 2 2 ~('e 1 -8 +0)(el+fiz+eA) 4J(MI-I + a"

a+ .-.-I} (E-40)

Associating sI and s gives

AB, I , r , I 2 2 8
-2 + + ~- +2 s +2j

"-2T :-'-• ,-- ' I( -- 1+0 X- +14aBl..

This is the transform of the second term of Eq. 218. Setting s a jw and combining the

two terms gives the transform of *f(T), which Is the spectrum, *f(w). The result is

Eq. 220 in example S.

4. PROBLEMS OF SECTION 5, 6

First, we obtain Eq. 222. Linear system analysis shows that

E(s) a -- X-- X(s) (B-42)

where E(s) end X(s) are the transforms of e(t) and x(t), reapeclively. But

X(s) = - • Y(s) (B-43)

where Y(Aj) in white Cause ian noise, and 1/(m,'}, from x(w) in Eq, 221, ib
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the shaping filter. Then

e = _ 1[y) 
(11.44)

where KS, from Eqs. B-42 and B.43, has Lt/'naform

Now
aTti M kl (,) k,(,r) dr- (B.46,

and, by application of the output aiveragew of gectiuLl 5. 2, (e (t) is ,t) e(t+T) evaluated
at T - 0). The transform of k3 (t1 ) kl(t2 ) is

(s1+A ) (Z+A)( 2 +A) (B-47)
and by associating s, and s2, the transform of k,(t) kl(t 2 ) Is

-B2 f A2  02
(A-0)z L5 + 2X + 1

Assuming that A 0 i, we have

C 2 Urn 3 2 AZ

s-0 A- '+

• ZJ•(B-01.

which is Eq. 222 In example 6, Equations 223 and 224 are obtained In a similar manner.(Equation B-49 can be obtained by standard linear methods (8); it is derived here by the
methods of Section V, in order to Illustrate this application to linear analysis,)

The nonlinear compensated system will now be considered. The first two system
transforms, LI(x) and L3 (s(i, s O 3), are given In Eqs. 10b and 106, The output error
is given by

e(t). r~) x(t) (B-5•0)
where X(t) Is related to the white Gaussian y(t) by Eq. B.43, We cnn show (assumingthat n3 is sufficiently small that only ea (t) and eP(t) contribute a,1gniflcantly to the error
e(t)) that

e(t) M eI(t) + s 3 (t) 
(B-51)

where

el 1 [y 
(B-52)
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C3 = _K3 yJ (13-D,)

aind K1 and &3 have transforms

K B (B-54)

An 3 B B Bq

K3 (l L s2, I + +2 + , (B-5a)

Here, we have taken p 0. Then

* it) e e1 (t) 2Mt) e3(t) + 01(t) (B-56)

where eI(t) is given in Eq. B-49. The other two terms of e (t) can be computed by

the methods of section 5. 4,

To illustrate this point we nhall compute el(t) e2 (t). Now

e 1 (t) e 2 (t) a (K'. K 3 )(Yl Y2 Y3 Y4 )

a 3 kI('r1) k3
4.Tlr "2,' T3 ) kridT2  (B-57)

from Eq. 199, with T i 0. tot

fk3 It, -., r) d-r a b(t) (B-59I)

The transform of this term, B(s), haa been wurkcd out in Fqs. ,13 and 214-216. Taking

K a AB 3 n 3 and a x F A in Pq. 216, gives

B(M) M_ On J1B-59)

The transform of kl(t 1 ) b(t 2 ) J%

3B BEn 3 1•_ (8-60)

+- s + A,

Now we can complete the evaluation of Eq. B.57 by ansociating s, and s. in

Eq, B-60 to give

3B 4a -) (B-13)
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4
i -•-- \j -A.

3 B~3

A "i(B.62)

In a similar manner, e0(t) can be c'oinput..d.

5. PROBLEMS OF' SECTION 5.9

The demired operation on y(t) in a predictor P, with the desired ouItpilt

dit) * y(t+T)

• /6(r-T) y(t-T) d-r (B.63)

P, therefore, has an impulse response p(t) a 4(t-T), ThA white Oaussian x(t) is

obtained by operating on y(t) to produce

ax * NI[y (B-64)

whenre th• aee,, "- operation on x(t) to produce d(t) in

F * (N*L_1) * _P * (NI+N3) * L I

n P*L tP* 3:) (B.65)

This operation is the sum of a first-order system and a third-order systemn, and the

impulse responses are

I l(t+T) (B-66)

and

! |(t 1 +T) 12 (tZ+T) 1 3 (t 3 +T) (13.67)

where Il(t) is the impulse resporse of
Inverthag L,(&) in Eq. 233 and app)ying Eq, 230 given a best realizable rystem t,

with

1 u _(,) + H (2) (B-68)

--. l) -.H--O + H!-i (B-69)

H11, 2 1!3-0 + 'U 3-1 + 3-13.- + 113-3 (B-70)
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Then the optimum output f(t) Is given oy

S• lix]

(g* [ I;+j! y] (B-7 1)

Working out the impulse reSr'-nses of H by meant of Eq. 231 shown thH.

H * L7 * J-l = M * K I * N-1 (B.72)

The detailed nature of M and KI are given E, &q. 235-239 in example S.
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